320 Can We define production environments more effectively by combining climate and management data? Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/jas/skaf300.044
The U.S. sheep industry operates under diverse environments, with differences in climatic and management conditions. A consequence may be expression of genotype-by-environment interactions (G×E), necessitating their incorporation into breeding strategies. Traditional methods for defining production environments may fail to capture the complexity of real-world management and climatic conditions, risking a loss in reliability of genetic evaluations. This study integrated climate and management data to define eco-management clusters, potentially offering a more accurate representation of production environments for G×E analyses in U.S. sheep. Data were collected from 97 flocks representing 5 sheep breeds: Katahdin (50 flocks), Polypay (21 flocks), Suffolk (13 flocks), Rambouillet (8 flocks), and Targhee (5 flocks). Climate data were sourced from NASA POWER based on flock-specific latitude and longitude coordinates and included elevation, seasonal precipitation, and soil moisture. Other meteorological variables (ambient temperature, relative humidity, wind speed, and solar radiation) were combined into a Comprehensive Climate Index and used as another climatic variable. Management data were obtained via a producer survey consisting of 60 questions, covering general husbandry, lambing, feeding, culling practices, and strategies for parasite control and mitigating adverse climatic conditions. Clustering analyses were conducted in R using the climate and management data either separately or together to delineate production environments. Climate clusters were derived using Principal Component Analysis (PCA). Management clusters were generated using Multiple Correspondence Analysis (MCA). Climate and management were combined into eco-management clusters using Factorial Analysis of Mixed Data (FAMD). Additionally, Linear Discriminant Analysis was applied to refine cluster separation. Only the top 5% of variables contributing to differentiation among clusters were retained to enhance interpretability. Clusters were validated using silhouette scores within each clustering method to confirm distinct groupings. Cross-tabulation of cluster memberships revealed a significant overlap between climate-based (PCA), management-based (MCA), and eco-management (FAMD) clusters. Climate-based clusters captured broad environmental differences, while management-based clusters reflected operational diversity. Eco-management clusters provided a more realistic classification, incorporating both factors, as animals thrive in environments shaped by both climatic conditions and management practices. Across all breeds, climate-based clustering explained the largest proportion of total variation (94 to 99%), while eco-management and management-based clusters accounted for less and similar amounts of variation (30 to 55%). Though the degree of improvement varied by breed, eco-management clusters offered a more refined classification of production environments. By improving the characterization of production environments, analyses of G×E may become more reliable improving predictions of genetic merit. Aligning selection for robustness and climatic resilience with flock-specific conditions can lead to more targeted breeding decisions. Future research will evaluate use of eco-management clusters in G×E analyses to identify climate-resilient sheep genotypes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/jas/skaf300.044
- https://academic.oup.com/jas/article-pdf/103/Supplement_3/36/64497261/skaf300.044.pdf
- OA Status
- bronze
- OpenAlex ID
- https://openalex.org/W4414831243
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414831243Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/jas/skaf300.044Digital Object Identifier
- Title
-
320 Can We define production environments more effectively by combining climate and management data?Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-01Full publication date if available
- Authors
-
Hilal Yazar Gunes, Réka Howard, Carrie S Wilson, Thomas W Murphy, B. A. Freking, J.M. Burke, J. Taylor, Luiz F. Brito, Ronald M LewisList of authors in order
- Landing page
-
https://doi.org/10.1093/jas/skaf300.044Publisher landing page
- PDF URL
-
https://academic.oup.com/jas/article-pdf/103/Supplement_3/36/64497261/skaf300.044.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://academic.oup.com/jas/article-pdf/103/Supplement_3/36/64497261/skaf300.044.pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414831243 |
|---|---|
| doi | https://doi.org/10.1093/jas/skaf300.044 |
| ids.doi | https://doi.org/10.1093/jas/skaf300.044 |
| ids.openalex | https://openalex.org/W4414831243 |
| fwci | 0.0 |
| type | article |
| title | 320 Can We define production environments more effectively by combining climate and management data? |
| biblio.issue | Supplement_3 |
| biblio.volume | 103 |
| biblio.last_page | 37 |
| biblio.first_page | 36 |
| topics[0].id | https://openalex.org/T10435 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.07970000058412552 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Environmental Impact and Sustainability |
| is_xpac | False |
| apc_list.value | 4000 |
| apc_list.currency | USD |
| apc_list.value_usd | 4000 |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1093/jas/skaf300.044 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S72684844 |
| locations[0].source.issn | 0021-8812, 1525-3015, 1525-3163, 1544-7847 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0021-8812 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Animal Science |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | https://academic.oup.com/jas/article-pdf/103/Supplement_3/36/64497261/skaf300.044.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Animal Science |
| locations[0].landing_page_url | https://doi.org/10.1093/jas/skaf300.044 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5005155732 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9672-7487 |
| authorships[0].author.display_name | Hilal Yazar Gunes |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I114395901 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Nebraska-Lincoln |
| authorships[0].institutions[0].id | https://openalex.org/I114395901 |
| authorships[0].institutions[0].ror | https://ror.org/043mer456 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I114395901 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Nebraska–Lincoln |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hilal Yazar Gunes |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Nebraska-Lincoln |
| authorships[1].author.id | https://openalex.org/A5039169685 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8837-3770 |
| authorships[1].author.display_name | Réka Howard |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I114395901 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Nebraska-Lincoln |
| authorships[1].institutions[0].id | https://openalex.org/I114395901 |
| authorships[1].institutions[0].ror | https://ror.org/043mer456 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I114395901 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Nebraska–Lincoln |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Réka Howard |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Nebraska-Lincoln |
| authorships[2].author.id | https://openalex.org/A5088443634 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9971-1061 |
| authorships[2].author.display_name | Carrie S Wilson |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1312222531 |
| authorships[2].affiliations[0].raw_affiliation_string | USDA, ARS, Range Sheep Production Efficiency Research Unit |
| authorships[2].institutions[0].id | https://openalex.org/I1312222531 |
| authorships[2].institutions[0].ror | https://ror.org/02d2m2044 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Agricultural Research Service |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Carrie S Wilson |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | USDA, ARS, Range Sheep Production Efficiency Research Unit |
| authorships[3].author.id | https://openalex.org/A5052783944 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3527-8814 |
| authorships[3].author.display_name | Thomas W Murphy |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210135792 |
| authorships[3].affiliations[0].raw_affiliation_string | USDA, ARS, Roman L. Hruska U.S. Meat Animal Research Center |
| authorships[3].institutions[0].id | https://openalex.org/I4210135792 |
| authorships[3].institutions[0].ror | https://ror.org/03hya7h57 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307, https://openalex.org/I4210135792, https://openalex.org/I4210145274 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Roman L. Hruska U.S. Meat Animal Research Center |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Thomas W Murphy |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | USDA, ARS, Roman L. Hruska U.S. Meat Animal Research Center |
| authorships[4].author.id | https://openalex.org/A5057264851 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5385-5692 |
| authorships[4].author.display_name | B. A. Freking |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210110627 |
| authorships[4].affiliations[0].raw_affiliation_string | USDA, ARS, Dale Bumpers Small Farms Research Center |
| authorships[4].institutions[0].id | https://openalex.org/I4210110627 |
| authorships[4].institutions[0].ror | https://ror.org/02qqnbq97 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307, https://openalex.org/I4210110627, https://openalex.org/I4210122704 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Dale Bumpers Small Farms Research Center |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Bradley A Freking |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | USDA, ARS, Dale Bumpers Small Farms Research Center |
| authorships[5].author.id | https://openalex.org/A5017365548 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | J.M. Burke |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210110627 |
| authorships[5].affiliations[0].raw_affiliation_string | USDA, ARS, Dale Bumpers Small Farms Research Center |
| authorships[5].institutions[0].id | https://openalex.org/I4210110627 |
| authorships[5].institutions[0].ror | https://ror.org/02qqnbq97 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307, https://openalex.org/I4210110627, https://openalex.org/I4210122704 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Dale Bumpers Small Farms Research Center |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Joan M Burke |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | USDA, ARS, Dale Bumpers Small Farms Research Center |
| authorships[6].author.id | https://openalex.org/A5109001603 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | J. Taylor |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210135792 |
| authorships[6].affiliations[0].raw_affiliation_string | USDA, ARS, Roman L. Hruska U.S. Meat Animal Research Center |
| authorships[6].institutions[0].id | https://openalex.org/I4210135792 |
| authorships[6].institutions[0].ror | https://ror.org/03hya7h57 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307, https://openalex.org/I4210135792, https://openalex.org/I4210145274 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Roman L. Hruska U.S. Meat Animal Research Center |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Joshua Bret B Taylor |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | USDA, ARS, Roman L. Hruska U.S. Meat Animal Research Center |
| authorships[7].author.id | https://openalex.org/A5050987254 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5819-0922 |
| authorships[7].author.display_name | Luiz F. Brito |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I219193219 |
| authorships[7].affiliations[0].raw_affiliation_string | Purdue University |
| authorships[7].institutions[0].id | https://openalex.org/I219193219 |
| authorships[7].institutions[0].ror | https://ror.org/02dqehb95 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I219193219 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Purdue University West Lafayette |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Luiz F Brito |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Purdue University |
| authorships[8].author.id | https://openalex.org/A5038731101 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-1658-443X |
| authorships[8].author.display_name | Ronald M Lewis |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I114395901 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Animal Science, University of Nebraska-Lincoln |
| authorships[8].institutions[0].id | https://openalex.org/I114395901 |
| authorships[8].institutions[0].ror | https://ror.org/043mer456 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I114395901 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Nebraska–Lincoln |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Ronald M Lewis |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Animal Science, University of Nebraska-Lincoln |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://academic.oup.com/jas/article-pdf/103/Supplement_3/36/64497261/skaf300.044.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | 320 Can We define production environments more effectively by combining climate and management data? |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10435 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.07970000058412552 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Environmental Impact and Sustainability |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1093/jas/skaf300.044 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S72684844 |
| best_oa_location.source.issn | 0021-8812, 1525-3015, 1525-3163, 1544-7847 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0021-8812 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Animal Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://academic.oup.com/jas/article-pdf/103/Supplement_3/36/64497261/skaf300.044.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Animal Science |
| best_oa_location.landing_page_url | https://doi.org/10.1093/jas/skaf300.044 |
| primary_location.id | doi:10.1093/jas/skaf300.044 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S72684844 |
| primary_location.source.issn | 0021-8812, 1525-3015, 1525-3163, 1544-7847 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0021-8812 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Animal Science |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | https://academic.oup.com/jas/article-pdf/103/Supplement_3/36/64497261/skaf300.044.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Animal Science |
| primary_location.landing_page_url | https://doi.org/10.1093/jas/skaf300.044 |
| publication_date | 2025-10-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 90 |
| abstract_inverted_index.A | 16 |
| abstract_inverted_index.R | 190 |
| abstract_inverted_index.a | 50, 70, 146, 161, 283, 310, 372 |
| abstract_inverted_index.(5 | 107 |
| abstract_inverted_index.(8 | 103 |
| abstract_inverted_index.5% | 251 |
| abstract_inverted_index.60 | 166 |
| abstract_inverted_index.97 | 87 |
| abstract_inverted_index.By | 379 |
| abstract_inverted_index.as | 152, 317 |
| abstract_inverted_index.be | 19 |
| abstract_inverted_index.by | 323, 367 |
| abstract_inverted_index.in | 11, 52, 80, 189, 320, 423 |
| abstract_inverted_index.of | 21, 43, 54, 74, 165, 234, 252, 279, 339, 356, 364, 376, 383, 387, 395, 420 |
| abstract_inverted_index.on | 117 |
| abstract_inverted_index.or | 199 |
| abstract_inverted_index.to | 39, 64, 201, 244, 255, 261, 274, 343, 359, 410, 426 |
| abstract_inverted_index.(13 | 100 |
| abstract_inverted_index.(21 | 97 |
| abstract_inverted_index.(30 | 358 |
| abstract_inverted_index.(50 | 94 |
| abstract_inverted_index.(94 | 342 |
| abstract_inverted_index.The | 1 |
| abstract_inverted_index.all | 331 |
| abstract_inverted_index.and | 13, 46, 61, 105, 120, 123, 128, 140, 150, 175, 180, 194, 224, 291, 327, 347, 353, 402 |
| abstract_inverted_index.can | 408 |
| abstract_inverted_index.for | 33, 77, 177, 351, 400 |
| abstract_inverted_index.may | 18, 37, 389 |
| abstract_inverted_index.the | 41, 192, 249, 336, 362, 381 |
| abstract_inverted_index.top | 250 |
| abstract_inverted_index.use | 419 |
| abstract_inverted_index.via | 160 |
| abstract_inverted_index.was | 242 |
| abstract_inverted_index.Data | 83, 236 |
| abstract_inverted_index.G×E | 78, 388, 424 |
| abstract_inverted_index.NASA | 114 |
| abstract_inverted_index.Only | 248 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.U.S. | 2, 81 |
| abstract_inverted_index.both | 315, 324 |
| abstract_inverted_index.data | 63, 110, 157, 196 |
| abstract_inverted_index.each | 271 |
| abstract_inverted_index.fail | 38 |
| abstract_inverted_index.from | 86, 113 |
| abstract_inverted_index.into | 28, 145, 228 |
| abstract_inverted_index.lead | 409 |
| abstract_inverted_index.less | 352 |
| abstract_inverted_index.loss | 51 |
| abstract_inverted_index.more | 71, 311, 373, 391, 411 |
| abstract_inverted_index.soil | 129 |
| abstract_inverted_index.used | 151 |
| abstract_inverted_index.were | 84, 111, 143, 158, 187, 207, 216, 226, 259, 265 |
| abstract_inverted_index.will | 417 |
| abstract_inverted_index.wind | 138 |
| abstract_inverted_index.with | 9, 405 |
| abstract_inverted_index.55%). | 360 |
| abstract_inverted_index.99%), | 344 |
| abstract_inverted_index.Index | 149 |
| abstract_inverted_index.Mixed | 235 |
| abstract_inverted_index.Other | 131 |
| abstract_inverted_index.POWER | 115 |
| abstract_inverted_index.among | 257 |
| abstract_inverted_index.based | 116 |
| abstract_inverted_index.broad | 298 |
| abstract_inverted_index.sheep | 3, 91, 429 |
| abstract_inverted_index.solar | 141 |
| abstract_inverted_index.study | 58 |
| abstract_inverted_index.their | 26 |
| abstract_inverted_index.total | 340 |
| abstract_inverted_index.under | 6 |
| abstract_inverted_index.using | 191, 209, 218, 231, 267 |
| abstract_inverted_index.while | 301, 345 |
| abstract_inverted_index.(FAMD) | 293 |
| abstract_inverted_index.(MCA), | 290 |
| abstract_inverted_index.(MCA). | 222 |
| abstract_inverted_index.(PCA), | 288 |
| abstract_inverted_index.(PCA). | 213 |
| abstract_inverted_index.Across | 330 |
| abstract_inverted_index.Future | 415 |
| abstract_inverted_index.Linear | 239 |
| abstract_inverted_index.Though | 361 |
| abstract_inverted_index.become | 390 |
| abstract_inverted_index.breed, | 368 |
| abstract_inverted_index.define | 65 |
| abstract_inverted_index.degree | 363 |
| abstract_inverted_index.either | 197 |
| abstract_inverted_index.flocks | 88 |
| abstract_inverted_index.merit. | 397 |
| abstract_inverted_index.method | 273 |
| abstract_inverted_index.refine | 245 |
| abstract_inverted_index.scores | 269 |
| abstract_inverted_index.shaped | 322 |
| abstract_inverted_index.sheep. | 82 |
| abstract_inverted_index.speed, | 139 |
| abstract_inverted_index.survey | 163 |
| abstract_inverted_index.thrive | 319 |
| abstract_inverted_index.varied | 366 |
| abstract_inverted_index.within | 270 |
| abstract_inverted_index.(FAMD). | 237 |
| abstract_inverted_index.(G×E), | 24 |
| abstract_inverted_index.Climate | 109, 148, 205, 223 |
| abstract_inverted_index.Polypay | 96 |
| abstract_inverted_index.Suffolk | 99 |
| abstract_inverted_index.Targhee | 106 |
| abstract_inverted_index.adverse | 182 |
| abstract_inverted_index.amounts | 355 |
| abstract_inverted_index.animals | 318 |
| abstract_inverted_index.another | 153 |
| abstract_inverted_index.applied | 243 |
| abstract_inverted_index.between | 286 |
| abstract_inverted_index.breeds, | 332 |
| abstract_inverted_index.breeds: | 92 |
| abstract_inverted_index.capture | 40 |
| abstract_inverted_index.climate | 60, 193 |
| abstract_inverted_index.cluster | 246, 280 |
| abstract_inverted_index.confirm | 275 |
| abstract_inverted_index.control | 179 |
| abstract_inverted_index.culling | 173 |
| abstract_inverted_index.derived | 208 |
| abstract_inverted_index.diverse | 7 |
| abstract_inverted_index.enhance | 262 |
| abstract_inverted_index.general | 169 |
| abstract_inverted_index.genetic | 55, 396 |
| abstract_inverted_index.largest | 337 |
| abstract_inverted_index.methods | 32 |
| abstract_inverted_index.offered | 371 |
| abstract_inverted_index.overlap | 285 |
| abstract_inverted_index.refined | 374 |
| abstract_inverted_index.risking | 49 |
| abstract_inverted_index.similar | 354 |
| abstract_inverted_index.sourced | 112 |
| abstract_inverted_index.(ambient | 134 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Aligning | 398 |
| abstract_inverted_index.Analysis | 212, 221, 233, 241 |
| abstract_inverted_index.Clusters | 264 |
| abstract_inverted_index.Katahdin | 93 |
| abstract_inverted_index.Multiple | 219 |
| abstract_inverted_index.accurate | 72 |
| abstract_inverted_index.analyses | 79, 186, 386, 425 |
| abstract_inverted_index.breeding | 29, 413 |
| abstract_inverted_index.captured | 297 |
| abstract_inverted_index.climatic | 12, 47, 154, 183, 325, 403 |
| abstract_inverted_index.clusters | 206, 215, 230, 258, 296, 303, 308, 349, 370, 422 |
| abstract_inverted_index.combined | 144, 227 |
| abstract_inverted_index.covering | 168 |
| abstract_inverted_index.defining | 34 |
| abstract_inverted_index.distinct | 276 |
| abstract_inverted_index.evaluate | 418 |
| abstract_inverted_index.factors, | 316 |
| abstract_inverted_index.feeding, | 172 |
| abstract_inverted_index.flocks), | 95, 98, 101, 104 |
| abstract_inverted_index.flocks). | 108 |
| abstract_inverted_index.identify | 427 |
| abstract_inverted_index.included | 124 |
| abstract_inverted_index.industry | 4 |
| abstract_inverted_index.lambing, | 171 |
| abstract_inverted_index.latitude | 119 |
| abstract_inverted_index.obtained | 159 |
| abstract_inverted_index.offering | 69 |
| abstract_inverted_index.operates | 5 |
| abstract_inverted_index.parasite | 178 |
| abstract_inverted_index.producer | 162 |
| abstract_inverted_index.provided | 309 |
| abstract_inverted_index.relative | 136 |
| abstract_inverted_index.reliable | 392 |
| abstract_inverted_index.research | 416 |
| abstract_inverted_index.retained | 260 |
| abstract_inverted_index.revealed | 282 |
| abstract_inverted_index.seasonal | 126 |
| abstract_inverted_index.targeted | 412 |
| abstract_inverted_index.together | 200 |
| abstract_inverted_index.Component | 211 |
| abstract_inverted_index.Factorial | 232 |
| abstract_inverted_index.Principal | 210 |
| abstract_inverted_index.accounted | 350 |
| abstract_inverted_index.clusters, | 67 |
| abstract_inverted_index.clusters. | 294 |
| abstract_inverted_index.collected | 85 |
| abstract_inverted_index.conducted | 188 |
| abstract_inverted_index.delineate | 202 |
| abstract_inverted_index.explained | 335 |
| abstract_inverted_index.generated | 217 |
| abstract_inverted_index.humidity, | 137 |
| abstract_inverted_index.improving | 380, 393 |
| abstract_inverted_index.longitude | 121 |
| abstract_inverted_index.moisture. | 130 |
| abstract_inverted_index.realistic | 312 |
| abstract_inverted_index.reflected | 304 |
| abstract_inverted_index.selection | 399 |
| abstract_inverted_index.validated | 266 |
| abstract_inverted_index.variable. | 155 |
| abstract_inverted_index.variables | 133, 253 |
| abstract_inverted_index.variation | 341, 357 |
| abstract_inverted_index.Clustering | 185 |
| abstract_inverted_index.Management | 156, 214 |
| abstract_inverted_index.clustering | 272, 334 |
| abstract_inverted_index.complexity | 42 |
| abstract_inverted_index.conditions | 326, 407 |
| abstract_inverted_index.consisting | 164 |
| abstract_inverted_index.decisions. | 414 |
| abstract_inverted_index.diversity. | 306 |
| abstract_inverted_index.elevation, | 125 |
| abstract_inverted_index.expression | 20 |
| abstract_inverted_index.genotypes. | 430 |
| abstract_inverted_index.groupings. | 277 |
| abstract_inverted_index.husbandry, | 170 |
| abstract_inverted_index.integrated | 59 |
| abstract_inverted_index.management | 14, 45, 62, 195, 225, 328 |
| abstract_inverted_index.mitigating | 181 |
| abstract_inverted_index.practices, | 174 |
| abstract_inverted_index.practices. | 329 |
| abstract_inverted_index.production | 35, 75, 203, 377, 384 |
| abstract_inverted_index.proportion | 338 |
| abstract_inverted_index.questions, | 167 |
| abstract_inverted_index.radiation) | 142 |
| abstract_inverted_index.real-world | 44 |
| abstract_inverted_index.resilience | 404 |
| abstract_inverted_index.robustness | 401 |
| abstract_inverted_index.separately | 198 |
| abstract_inverted_index.silhouette | 268 |
| abstract_inverted_index.strategies | 176 |
| abstract_inverted_index.Rambouillet | 102 |
| abstract_inverted_index.Traditional | 31 |
| abstract_inverted_index.conditions, | 48 |
| abstract_inverted_index.conditions. | 15, 184 |
| abstract_inverted_index.consequence | 17 |
| abstract_inverted_index.coordinates | 122 |
| abstract_inverted_index.differences | 10 |
| abstract_inverted_index.improvement | 365 |
| abstract_inverted_index.memberships | 281 |
| abstract_inverted_index.operational | 305 |
| abstract_inverted_index.potentially | 68 |
| abstract_inverted_index.predictions | 394 |
| abstract_inverted_index.reliability | 53 |
| abstract_inverted_index.separation. | 247 |
| abstract_inverted_index.significant | 284 |
| abstract_inverted_index.strategies. | 30 |
| abstract_inverted_index.Discriminant | 240 |
| abstract_inverted_index.contributing | 254 |
| abstract_inverted_index.differences, | 300 |
| abstract_inverted_index.environments | 36, 76, 321 |
| abstract_inverted_index.evaluations. | 56 |
| abstract_inverted_index.interactions | 23 |
| abstract_inverted_index.representing | 89 |
| abstract_inverted_index.temperature, | 135 |
| abstract_inverted_index.Additionally, | 238 |
| abstract_inverted_index.Climate-based | 295 |
| abstract_inverted_index.Comprehensive | 147 |
| abstract_inverted_index.climate-based | 287, 333 |
| abstract_inverted_index.environmental | 299 |
| abstract_inverted_index.environments, | 8, 385 |
| abstract_inverted_index.environments. | 204, 378 |
| abstract_inverted_index.incorporating | 314 |
| abstract_inverted_index.incorporation | 27 |
| abstract_inverted_index.necessitating | 25 |
| abstract_inverted_index.Correspondence | 220 |
| abstract_inverted_index.Eco-management | 307 |
| abstract_inverted_index.classification | 375 |
| abstract_inverted_index.eco-management | 66, 229, 292, 346, 369, 421 |
| abstract_inverted_index.flock-specific | 118, 406 |
| abstract_inverted_index.meteorological | 132 |
| abstract_inverted_index.precipitation, | 127 |
| abstract_inverted_index.representation | 73 |
| abstract_inverted_index.classification, | 313 |
| abstract_inverted_index.differentiation | 256 |
| abstract_inverted_index.Cross-tabulation | 278 |
| abstract_inverted_index.characterization | 382 |
| abstract_inverted_index.management-based | 289, 302, 348 |
| abstract_inverted_index.climate-resilient | 428 |
| abstract_inverted_index.interpretability. | 263 |
| abstract_inverted_index.genotype-by-environment | 22 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.48831052 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |