3D detection and characterization of ALMA sources through deep learning Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1093/mnras/stac3314
We present a deep learning (DL) pipeline developed for the detection and characterization of astronomical sources within simulated Atacama Large Millimeter/submillimeter Array (ALMA) data cubes. The pipeline is composed of six DL models: a convolutional autoencoder for source detection within the spatial domain of the integrated data cubes, a Recurrent Neural Network (RNN) for denoising and peak detection within the frequency domain, and four residual neural networks (ResNets) for source characterization. The combination of spatial and frequency information improves completeness while decreasing spurious signal detection. To train and test the pipeline, we developed a simulation algorithm able to generate realistic ALMA observations, i.e. both sky model and dirty cubes. The algorithm simulates always a central source surrounded by fainter ones scattered within the cube. Some sources were spatially superimposed in order to test the pipeline deblending capabilities. The detection performances of the pipeline were compared to those of other methods and significant improvements in performances were achieved. Source morphologies are detected with subpixel accuracies obtaining mean residual errors of 10−3 pixel (0.1 mas) and 10−1 mJy beam−1 on positions and flux estimations, respectively. Projection angles and flux densities are also recovered within 10 per cent of the true values for 80 and 73 per cent of all sources in the test set, respectively. While our pipeline is fine-tuned for ALMA data, the technique is applicable to other interferometric observatories, as SKA, LOFAR, VLBI, and VLTI.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/mnras/stac3314
- OA Status
- green
- Cited By
- 7
- References
- 68
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4308840617
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4308840617Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/mnras/stac3314Digital Object Identifier
- Title
-
3D detection and characterization of ALMA sources through deep learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-11-12Full publication date if available
- Authors
-
Michele Delli Veneri, Łukasz Tychoniec, Fabrizia Guglielmetti, G. Longo, Eric VillardList of authors in order
- Landing page
-
https://doi.org/10.1093/mnras/stac3314Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2211.11462Direct OA link when available
- Concepts
-
LOFAR, Computer science, Residual, Sky, Pipeline (software), Interferometry, Convolutional neural network, Subpixel rendering, Remote sensing, Artificial intelligence, Physics, Algorithm, Pixel, Optics, Geology, Astrophysics, Telecommunications, Programming language, Low frequencyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
68Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4308840617 |
|---|---|
| doi | https://doi.org/10.1093/mnras/stac3314 |
| ids.doi | https://doi.org/10.1093/mnras/stac3314 |
| ids.openalex | https://openalex.org/W4308840617 |
| fwci | 5.39098616 |
| type | article |
| title | 3D detection and characterization of ALMA sources through deep learning |
| biblio.issue | 3 |
| biblio.volume | 518 |
| biblio.last_page | 3427 |
| biblio.first_page | 3407 |
| grants[0].funder | https://openalex.org/F4320320898 |
| grants[0].award_id | |
| grants[0].funder_display_name | European School of Oncology |
| grants[1].funder | https://openalex.org/F4320321422 |
| grants[1].award_id | |
| grants[1].funder_display_name | Alberta Livestock and Meat Agency |
| grants[2].funder | https://openalex.org/F4320322765 |
| grants[2].award_id | |
| grants[2].funder_display_name | European Southern Observatory |
| grants[3].funder | https://openalex.org/F4320332604 |
| grants[3].award_id | |
| grants[3].funder_display_name | Institute for Translational Neuroscience |
| topics[0].id | https://openalex.org/T12450 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Radio Astronomy Observations and Technology |
| topics[1].id | https://openalex.org/T10818 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | Astrophysics and Cosmic Phenomena |
| topics[2].id | https://openalex.org/T10026 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3103 |
| topics[2].subfield.display_name | Astronomy and Astrophysics |
| topics[2].display_name | Galaxies: Formation, Evolution, Phenomena |
| funders[0].id | https://openalex.org/F4320320898 |
| funders[0].ror | https://ror.org/02kvnjb40 |
| funders[0].display_name | European School of Oncology |
| funders[1].id | https://openalex.org/F4320321422 |
| funders[1].ror | https://ror.org/023rnh198 |
| funders[1].display_name | Alberta Livestock and Meat Agency |
| funders[2].id | https://openalex.org/F4320322765 |
| funders[2].ror | https://ror.org/01qtasp15 |
| funders[2].display_name | European Southern Observatory |
| funders[3].id | https://openalex.org/F4320332604 |
| funders[3].ror | https://ror.org/017zqws13 |
| funders[3].display_name | Institute for Translational Neuroscience |
| is_xpac | False |
| apc_list.value | 2310 |
| apc_list.currency | GBP |
| apc_list.value_usd | 2833 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780590096 |
| concepts[0].level | 3 |
| concepts[0].score | 0.610670268535614 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q104528246 |
| concepts[0].display_name | LOFAR |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5862522125244141 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C155512373 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5823720693588257 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[2].display_name | Residual |
| concepts[3].id | https://openalex.org/C73329638 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5481361746788025 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q527 |
| concepts[3].display_name | Sky |
| concepts[4].id | https://openalex.org/C43521106 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5218892693519592 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[4].display_name | Pipeline (software) |
| concepts[5].id | https://openalex.org/C166689943 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48622432351112366 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q850283 |
| concepts[5].display_name | Interferometry |
| concepts[6].id | https://openalex.org/C81363708 |
| concepts[6].level | 2 |
| concepts[6].score | 0.47810977697372437 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[6].display_name | Convolutional neural network |
| concepts[7].id | https://openalex.org/C68516990 |
| concepts[7].level | 3 |
| concepts[7].score | 0.41309189796447754 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q452912 |
| concepts[7].display_name | Subpixel rendering |
| concepts[8].id | https://openalex.org/C62649853 |
| concepts[8].level | 1 |
| concepts[8].score | 0.38364604115486145 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[8].display_name | Remote sensing |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3691145181655884 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.31131768226623535 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.28338712453842163 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C160633673 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2607113718986511 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[12].display_name | Pixel |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20430684089660645 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| concepts[14].id | https://openalex.org/C127313418 |
| concepts[14].level | 0 |
| concepts[14].score | 0.19417569041252136 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[14].display_name | Geology |
| concepts[15].id | https://openalex.org/C44870925 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17957961559295654 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[15].display_name | Astrophysics |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08526027202606201 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C199360897 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[17].display_name | Programming language |
| concepts[18].id | https://openalex.org/C104892082 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q17156810 |
| concepts[18].display_name | Low frequency |
| keywords[0].id | https://openalex.org/keywords/lofar |
| keywords[0].score | 0.610670268535614 |
| keywords[0].display_name | LOFAR |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5862522125244141 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/residual |
| keywords[2].score | 0.5823720693588257 |
| keywords[2].display_name | Residual |
| keywords[3].id | https://openalex.org/keywords/sky |
| keywords[3].score | 0.5481361746788025 |
| keywords[3].display_name | Sky |
| keywords[4].id | https://openalex.org/keywords/pipeline |
| keywords[4].score | 0.5218892693519592 |
| keywords[4].display_name | Pipeline (software) |
| keywords[5].id | https://openalex.org/keywords/interferometry |
| keywords[5].score | 0.48622432351112366 |
| keywords[5].display_name | Interferometry |
| keywords[6].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[6].score | 0.47810977697372437 |
| keywords[6].display_name | Convolutional neural network |
| keywords[7].id | https://openalex.org/keywords/subpixel-rendering |
| keywords[7].score | 0.41309189796447754 |
| keywords[7].display_name | Subpixel rendering |
| keywords[8].id | https://openalex.org/keywords/remote-sensing |
| keywords[8].score | 0.38364604115486145 |
| keywords[8].display_name | Remote sensing |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.3691145181655884 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.31131768226623535 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.28338712453842163 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/pixel |
| keywords[12].score | 0.2607113718986511 |
| keywords[12].display_name | Pixel |
| keywords[13].id | https://openalex.org/keywords/optics |
| keywords[13].score | 0.20430684089660645 |
| keywords[13].display_name | Optics |
| keywords[14].id | https://openalex.org/keywords/geology |
| keywords[14].score | 0.19417569041252136 |
| keywords[14].display_name | Geology |
| keywords[15].id | https://openalex.org/keywords/astrophysics |
| keywords[15].score | 0.17957961559295654 |
| keywords[15].display_name | Astrophysics |
| keywords[16].id | https://openalex.org/keywords/telecommunications |
| keywords[16].score | 0.08526027202606201 |
| keywords[16].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1093/mnras/stac3314 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S195663288 |
| locations[0].source.issn | 0035-8711, 1365-2966, 1365-8711 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0035-8711 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Monthly Notices of the Royal Astronomical Society |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Monthly Notices of the Royal Astronomical Society |
| locations[0].landing_page_url | https://doi.org/10.1093/mnras/stac3314 |
| locations[1].id | pmh:oai:arXiv.org:2211.11462 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2211.11462 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2211.11462 |
| indexed_in | arxiv, crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5069099137 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8178-2942 |
| authorships[0].author.display_name | Michele Delli Veneri |
| authorships[0].countries | IT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210108560 |
| authorships[0].affiliations[0].raw_affiliation_string | INFN Section of Naples, Complesso Universitario di Monte Sant'Angelo , Via Cintia, I-80126 Napoli, Naples, Italy |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I71267560 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Electrical Engineering and Information Technology, University of Naples ‘Federico II’ , Via Claudio, 21, I-80125 Napoli, Naples, Italy |
| authorships[0].institutions[0].id | https://openalex.org/I4210108560 |
| authorships[0].institutions[0].ror | https://ror.org/015kcdd40 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I160013858, https://openalex.org/I4210108560 |
| authorships[0].institutions[0].country_code | IT |
| authorships[0].institutions[0].display_name | Istituto Nazionale di Fisica Nucleare, Sezione di Napoli |
| authorships[0].institutions[1].id | https://openalex.org/I71267560 |
| authorships[0].institutions[1].ror | https://ror.org/05290cv24 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I71267560 |
| authorships[0].institutions[1].country_code | IT |
| authorships[0].institutions[1].display_name | University of Naples Federico II |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Michele Delli Veneri |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Electrical Engineering and Information Technology, University of Naples ‘Federico II’ , Via Claudio, 21, I-80125 Napoli, Naples, Italy, INFN Section of Naples, Complesso Universitario di Monte Sant'Angelo , Via Cintia, I-80126 Napoli, Naples, Italy |
| authorships[1].author.id | https://openalex.org/A5032356178 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9470-2358 |
| authorships[1].author.display_name | Łukasz Tychoniec |
| authorships[1].affiliations[0].raw_affiliation_string | ESO , Karl-Schwarzschild-Straße 2, D-85748 Garching bei München, Germany |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Łukasz Tychoniec |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | ESO , Karl-Schwarzschild-Straße 2, D-85748 Garching bei München, Germany |
| authorships[2].author.id | https://openalex.org/A5058579142 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1201-2466 |
| authorships[2].author.display_name | Fabrizia Guglielmetti |
| authorships[2].affiliations[0].raw_affiliation_string | ESO , Karl-Schwarzschild-Straße 2, D-85748 Garching bei München, Germany |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fabrizia Guglielmetti |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | ESO , Karl-Schwarzschild-Straße 2, D-85748 Garching bei München, Germany |
| authorships[3].author.id | https://openalex.org/A5028392415 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9182-8414 |
| authorships[3].author.display_name | G. Longo |
| authorships[3].countries | IT |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I71267560 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Physics ‘Ettore Pancini’, University of Naples ‘Federico II’ , Via Cintia, I-80126 Napoli, Naples, Italy |
| authorships[3].institutions[0].id | https://openalex.org/I71267560 |
| authorships[3].institutions[0].ror | https://ror.org/05290cv24 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I71267560 |
| authorships[3].institutions[0].country_code | IT |
| authorships[3].institutions[0].display_name | University of Naples Federico II |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Giuseppe Longo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Physics ‘Ettore Pancini’, University of Naples ‘Federico II’ , Via Cintia, I-80126 Napoli, Naples, Italy |
| authorships[4].author.id | https://openalex.org/A5086312756 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4314-4947 |
| authorships[4].author.display_name | Eric Villard |
| authorships[4].affiliations[0].raw_affiliation_string | ESO , Karl-Schwarzschild-Straße 2, D-85748 Garching bei München, Germany |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Eric Villard |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ESO , Karl-Schwarzschild-Straße 2, D-85748 Garching bei München, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2211.11462 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-11-17T00:00:00 |
| display_name | 3D detection and characterization of ALMA sources through deep learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12450 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Radio Astronomy Observations and Technology |
| related_works | https://openalex.org/W2949477513, https://openalex.org/W2369528593, https://openalex.org/W4298274539, https://openalex.org/W4246176573, https://openalex.org/W2115182285, https://openalex.org/W2385629811, https://openalex.org/W1674878702, https://openalex.org/W2638735979, https://openalex.org/W2100487215, https://openalex.org/W2201504242 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2211.11462 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2211.11462 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2211.11462 |
| primary_location.id | doi:10.1093/mnras/stac3314 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S195663288 |
| primary_location.source.issn | 0035-8711, 1365-2966, 1365-8711 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0035-8711 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Monthly Notices of the Royal Astronomical Society |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Monthly Notices of the Royal Astronomical Society |
| primary_location.landing_page_url | https://doi.org/10.1093/mnras/stac3314 |
| publication_date | 2022-11-12 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3201151244, https://openalex.org/W2596169338, https://openalex.org/W1920023268, https://openalex.org/W2888532099, https://openalex.org/W3005320834, https://openalex.org/W2593224863, https://openalex.org/W3106786448, https://openalex.org/W4225894902, https://openalex.org/W2968857122, https://openalex.org/W4285225314, https://openalex.org/W2130736142, https://openalex.org/W6912465231, https://openalex.org/W2015637674, https://openalex.org/W4226090658, https://openalex.org/W4223997682, https://openalex.org/W2118767386, https://openalex.org/W2100495367, https://openalex.org/W2002442941, https://openalex.org/W2798737969, https://openalex.org/W3007561154, https://openalex.org/W2787255625, https://openalex.org/W3047856369, https://openalex.org/W3105061471, https://openalex.org/W4224133960, https://openalex.org/W2952177779, https://openalex.org/W2996704178, https://openalex.org/W3012556652, https://openalex.org/W2136655611, https://openalex.org/W2984048300, https://openalex.org/W2907627375, https://openalex.org/W2055764299, https://openalex.org/W2918807486, https://openalex.org/W1965143042, https://openalex.org/W4206366902, https://openalex.org/W4300402905, https://openalex.org/W2864116548, https://openalex.org/W4224279096, https://openalex.org/W2087094408, https://openalex.org/W4296137010, https://openalex.org/W4303439025, https://openalex.org/W1633529777, https://openalex.org/W3003257820, https://openalex.org/W3175069493, https://openalex.org/W2921449040, https://openalex.org/W4226137426, https://openalex.org/W1596936080, https://openalex.org/W3111592559, https://openalex.org/W3014775667, https://openalex.org/W4226220902, https://openalex.org/W2888285221, https://openalex.org/W3102230680, https://openalex.org/W2939621630, https://openalex.org/W3103581061, https://openalex.org/W4224213174, https://openalex.org/W2989278872, https://openalex.org/W3106048360, https://openalex.org/W2535706401, https://openalex.org/W2964121744, https://openalex.org/W4293761850, https://openalex.org/W4301446022, https://openalex.org/W3103681827, https://openalex.org/W3101453799, https://openalex.org/W4212774754, https://openalex.org/W3104422888, https://openalex.org/W2194775991, https://openalex.org/W4301323844, https://openalex.org/W2242464395, https://openalex.org/W3101946919 |
| referenced_works_count | 68 |
| abstract_inverted_index.a | 3, 34, 49, 94, 114 |
| abstract_inverted_index.10 | 193 |
| abstract_inverted_index.73 | 203 |
| abstract_inverted_index.80 | 201 |
| abstract_inverted_index.DL | 32 |
| abstract_inverted_index.To | 86 |
| abstract_inverted_index.We | 1 |
| abstract_inverted_index.as | 230 |
| abstract_inverted_index.by | 118 |
| abstract_inverted_index.in | 130, 154, 209 |
| abstract_inverted_index.is | 28, 217, 224 |
| abstract_inverted_index.of | 14, 30, 44, 74, 141, 148, 169, 196, 206 |
| abstract_inverted_index.on | 178 |
| abstract_inverted_index.to | 98, 132, 146, 226 |
| abstract_inverted_index.we | 92 |
| abstract_inverted_index.The | 26, 72, 110, 138 |
| abstract_inverted_index.all | 207 |
| abstract_inverted_index.and | 12, 56, 63, 76, 88, 107, 151, 174, 180, 186, 202, 234 |
| abstract_inverted_index.are | 160, 189 |
| abstract_inverted_index.for | 9, 37, 54, 69, 200, 219 |
| abstract_inverted_index.mJy | 176 |
| abstract_inverted_index.our | 215 |
| abstract_inverted_index.per | 194, 204 |
| abstract_inverted_index.six | 31 |
| abstract_inverted_index.sky | 105 |
| abstract_inverted_index.the | 10, 41, 45, 60, 90, 123, 134, 142, 197, 210, 222 |
| abstract_inverted_index.(0.1 | 172 |
| abstract_inverted_index.(DL) | 6 |
| abstract_inverted_index.ALMA | 101, 220 |
| abstract_inverted_index.SKA, | 231 |
| abstract_inverted_index.Some | 125 |
| abstract_inverted_index.able | 97 |
| abstract_inverted_index.also | 190 |
| abstract_inverted_index.both | 104 |
| abstract_inverted_index.cent | 195, 205 |
| abstract_inverted_index.data | 24, 47 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.flux | 181, 187 |
| abstract_inverted_index.four | 64 |
| abstract_inverted_index.i.e. | 103 |
| abstract_inverted_index.mas) | 173 |
| abstract_inverted_index.mean | 166 |
| abstract_inverted_index.ones | 120 |
| abstract_inverted_index.peak | 57 |
| abstract_inverted_index.set, | 212 |
| abstract_inverted_index.test | 89, 133, 211 |
| abstract_inverted_index.true | 198 |
| abstract_inverted_index.were | 127, 144, 156 |
| abstract_inverted_index.with | 162 |
| abstract_inverted_index.(RNN) | 53 |
| abstract_inverted_index.Array | 22 |
| abstract_inverted_index.Large | 20 |
| abstract_inverted_index.VLBI, | 233 |
| abstract_inverted_index.VLTI. | 235 |
| abstract_inverted_index.While | 214 |
| abstract_inverted_index.cube. | 124 |
| abstract_inverted_index.data, | 221 |
| abstract_inverted_index.dirty | 108 |
| abstract_inverted_index.model | 106 |
| abstract_inverted_index.order | 131 |
| abstract_inverted_index.other | 149, 227 |
| abstract_inverted_index.pixel | 171 |
| abstract_inverted_index.those | 147 |
| abstract_inverted_index.train | 87 |
| abstract_inverted_index.while | 81 |
| abstract_inverted_index.(ALMA) | 23 |
| abstract_inverted_index.10−1 | 175 |
| abstract_inverted_index.10−3 | 170 |
| abstract_inverted_index.LOFAR, | 232 |
| abstract_inverted_index.Neural | 51 |
| abstract_inverted_index.Source | 158 |
| abstract_inverted_index.always | 113 |
| abstract_inverted_index.angles | 185 |
| abstract_inverted_index.cubes, | 48 |
| abstract_inverted_index.cubes. | 25, 109 |
| abstract_inverted_index.domain | 43 |
| abstract_inverted_index.errors | 168 |
| abstract_inverted_index.neural | 66 |
| abstract_inverted_index.signal | 84 |
| abstract_inverted_index.source | 38, 70, 116 |
| abstract_inverted_index.values | 199 |
| abstract_inverted_index.within | 17, 40, 59, 122, 192 |
| abstract_inverted_index.Atacama | 19 |
| abstract_inverted_index.Network | 52 |
| abstract_inverted_index.central | 115 |
| abstract_inverted_index.domain, | 62 |
| abstract_inverted_index.fainter | 119 |
| abstract_inverted_index.methods | 150 |
| abstract_inverted_index.models: | 33 |
| abstract_inverted_index.present | 2 |
| abstract_inverted_index.sources | 16, 126, 208 |
| abstract_inverted_index.spatial | 42, 75 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.beam−1 | 177 |
| abstract_inverted_index.compared | 145 |
| abstract_inverted_index.composed | 29 |
| abstract_inverted_index.detected | 161 |
| abstract_inverted_index.generate | 99 |
| abstract_inverted_index.improves | 79 |
| abstract_inverted_index.learning | 5 |
| abstract_inverted_index.networks | 67 |
| abstract_inverted_index.pipeline | 7, 27, 135, 143, 216 |
| abstract_inverted_index.residual | 65, 167 |
| abstract_inverted_index.spurious | 83 |
| abstract_inverted_index.subpixel | 163 |
| abstract_inverted_index.(ResNets) | 68 |
| abstract_inverted_index.Recurrent | 50 |
| abstract_inverted_index.achieved. | 157 |
| abstract_inverted_index.algorithm | 96, 111 |
| abstract_inverted_index.denoising | 55 |
| abstract_inverted_index.densities | 188 |
| abstract_inverted_index.detection | 11, 39, 58, 139 |
| abstract_inverted_index.developed | 8, 93 |
| abstract_inverted_index.frequency | 61, 77 |
| abstract_inverted_index.obtaining | 165 |
| abstract_inverted_index.pipeline, | 91 |
| abstract_inverted_index.positions | 179 |
| abstract_inverted_index.realistic | 100 |
| abstract_inverted_index.recovered | 191 |
| abstract_inverted_index.scattered | 121 |
| abstract_inverted_index.simulated | 18 |
| abstract_inverted_index.simulates | 112 |
| abstract_inverted_index.spatially | 128 |
| abstract_inverted_index.technique | 223 |
| abstract_inverted_index.Projection | 184 |
| abstract_inverted_index.accuracies | 164 |
| abstract_inverted_index.applicable | 225 |
| abstract_inverted_index.deblending | 136 |
| abstract_inverted_index.decreasing | 82 |
| abstract_inverted_index.detection. | 85 |
| abstract_inverted_index.fine-tuned | 218 |
| abstract_inverted_index.integrated | 46 |
| abstract_inverted_index.simulation | 95 |
| abstract_inverted_index.surrounded | 117 |
| abstract_inverted_index.autoencoder | 36 |
| abstract_inverted_index.combination | 73 |
| abstract_inverted_index.information | 78 |
| abstract_inverted_index.significant | 152 |
| abstract_inverted_index.astronomical | 15 |
| abstract_inverted_index.completeness | 80 |
| abstract_inverted_index.estimations, | 182 |
| abstract_inverted_index.improvements | 153 |
| abstract_inverted_index.morphologies | 159 |
| abstract_inverted_index.performances | 140, 155 |
| abstract_inverted_index.superimposed | 129 |
| abstract_inverted_index.capabilities. | 137 |
| abstract_inverted_index.convolutional | 35 |
| abstract_inverted_index.observations, | 102 |
| abstract_inverted_index.respectively. | 183, 213 |
| abstract_inverted_index.observatories, | 229 |
| abstract_inverted_index.interferometric | 228 |
| abstract_inverted_index.characterization | 13 |
| abstract_inverted_index.characterization. | 71 |
| abstract_inverted_index.Millimeter/submillimeter | 21 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5069099137, https://openalex.org/A5058579142, https://openalex.org/A5032356178 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I4210108560, https://openalex.org/I71267560 |
| citation_normalized_percentile.value | 0.81171392 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |