3D medical image segmentation using the serial–parallel convolutional neural network and transformer based on cross‐window self‐attention Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1049/cit2.12411
Convolutional neural network (CNN) with the encoder–decoder structure is popular in medical image segmentation due to its excellent local feature extraction ability but it faces limitations in capturing the global feature. The transformer can extract the global information well but adapting it to small medical datasets is challenging and its computational complexity can be heavy. In this work, a serial and parallel network is proposed for the accurate 3D medical image segmentation by combining CNN and transformer and promoting feature interactions across various semantic levels. The core components of the proposed method include the cross window self‐attention based transformer (CWST) and multi‐scale local enhanced (MLE) modules. The CWST module enhances the global context understanding by partitioning 3D images into non‐overlapping windows and calculating sparse global attention between windows. The MLE module selectively fuses features by computing the voxel attention between different branch features, and uses convolution to strengthen the dense local information. The experiments on the prostate, atrium, and pancreas MR/CT image datasets consistently demonstrate the advantage of the proposed method over six popular segmentation models in both qualitative evaluation and quantitative indexes such as dice similarity coefficient, Intersection over Union, 95% Hausdorff distance and average symmetric surface distance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/cit2.12411
- OA Status
- gold
- Cited By
- 3
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406820641
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406820641Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/cit2.12411Digital Object Identifier
- Title
-
3D medical image segmentation using the serial–parallel convolutional neural network and transformer based on cross‐window self‐attentionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-25Full publication date if available
- Authors
-
B. X. Yu, Quan Zhou, Yuan Li, Huageng Liang, Pavel Shcherbakov, Xuming ZhangList of authors in order
- Landing page
-
https://doi.org/10.1049/cit2.12411Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1049/cit2.12411Direct OA link when available
- Concepts
-
Convolutional neural network, Computer science, Window (computing), Transformer, Artificial intelligence, Segmentation, Image segmentation, Computer vision, Pattern recognition (psychology), Engineering, Electrical engineering, Voltage, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406820641 |
|---|---|
| doi | https://doi.org/10.1049/cit2.12411 |
| ids.doi | https://doi.org/10.1049/cit2.12411 |
| ids.openalex | https://openalex.org/W4406820641 |
| fwci | 10.35400766 |
| type | article |
| title | 3D medical image segmentation using the serial–parallel convolutional neural network and transformer based on cross‐window self‐attention |
| awards[0].id | https://openalex.org/G2589646217 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2018YFE0206900 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G2761979991 |
| awards[1].funder_id | https://openalex.org/F4320321543 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2023M731204 |
| awards[1].funder_display_name | China Postdoctoral Science Foundation |
| biblio.issue | 2 |
| biblio.volume | 10 |
| biblio.last_page | 348 |
| biblio.first_page | 337 |
| topics[0].id | https://openalex.org/T12702 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9876000285148621 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2808 |
| topics[0].subfield.display_name | Neurology |
| topics[0].display_name | Brain Tumor Detection and Classification |
| topics[1].id | https://openalex.org/T10052 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9865999817848206 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Medical Image Segmentation Techniques |
| topics[2].id | https://openalex.org/T11659 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9835000038146973 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Advanced Image Fusion Techniques |
| funders[0].id | https://openalex.org/F4320321543 |
| funders[0].ror | https://ror.org/0426zh255 |
| funders[0].display_name | China Postdoctoral Science Foundation |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | USD |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2200 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6762821674346924 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6124595403671265 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778751112 |
| concepts[2].level | 2 |
| concepts[2].score | 0.605306088924408 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q835016 |
| concepts[2].display_name | Window (computing) |
| concepts[3].id | https://openalex.org/C66322947 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5728572010993958 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[3].display_name | Transformer |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5448950529098511 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C89600930 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5150418281555176 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[5].display_name | Segmentation |
| concepts[6].id | https://openalex.org/C124504099 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4455564022064209 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[6].display_name | Image segmentation |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3996887803077698 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.34354302287101746 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.15333521366119385 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C119599485 |
| concepts[10].level | 1 |
| concepts[10].score | 0.09007930755615234 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q43035 |
| concepts[10].display_name | Electrical engineering |
| concepts[11].id | https://openalex.org/C165801399 |
| concepts[11].level | 2 |
| concepts[11].score | 0.07661285996437073 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[11].display_name | Voltage |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.6762821674346924 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6124595403671265 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/window |
| keywords[2].score | 0.605306088924408 |
| keywords[2].display_name | Window (computing) |
| keywords[3].id | https://openalex.org/keywords/transformer |
| keywords[3].score | 0.5728572010993958 |
| keywords[3].display_name | Transformer |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5448950529098511 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/segmentation |
| keywords[5].score | 0.5150418281555176 |
| keywords[5].display_name | Segmentation |
| keywords[6].id | https://openalex.org/keywords/image-segmentation |
| keywords[6].score | 0.4455564022064209 |
| keywords[6].display_name | Image segmentation |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.3996887803077698 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.34354302287101746 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.15333521366119385 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/electrical-engineering |
| keywords[10].score | 0.09007930755615234 |
| keywords[10].display_name | Electrical engineering |
| keywords[11].id | https://openalex.org/keywords/voltage |
| keywords[11].score | 0.07661285996437073 |
| keywords[11].display_name | Voltage |
| language | en |
| locations[0].id | doi:10.1049/cit2.12411 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898415742 |
| locations[0].source.issn | 2468-2322, 2468-6557 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2468-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | CAAI Transactions on Intelligence Technology |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | CAAI Transactions on Intelligence Technology |
| locations[0].landing_page_url | https://doi.org/10.1049/cit2.12411 |
| locations[1].id | pmh:oai:doaj.org/article:d13a322bd07c4441bd31fc582c0a7cc1 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | CAAI Transactions on Intelligence Technology, Vol 10, Iss 2, Pp 337-348 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/d13a322bd07c4441bd31fc582c0a7cc1 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5107927787 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-0869-4184 |
| authorships[0].author.display_name | B. X. Yu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan China |
| authorships[0].institutions[0].id | https://openalex.org/I47720641 |
| authorships[0].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bin Yu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan China |
| authorships[1].author.id | https://openalex.org/A5048201329 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4995-1045 |
| authorships[1].author.display_name | Quan Zhou |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan China |
| authorships[1].institutions[0].id | https://openalex.org/I47720641 |
| authorships[1].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Quan Zhou |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan China |
| authorships[2].author.id | https://openalex.org/A5061860143 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4263-9569 |
| authorships[2].author.display_name | Yuan Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210142622, https://openalex.org/I47720641 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Ultrasound Imaging Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College Huazhong University of Science and Technology Wuhan China |
| authorships[2].institutions[0].id | https://openalex.org/I47720641 |
| authorships[2].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[2].institutions[1].id | https://openalex.org/I4210142622 |
| authorships[2].institutions[1].ror | https://ror.org/047c53f83 |
| authorships[2].institutions[1].type | healthcare |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210142622 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Wuhan Children's Hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li Yuan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Ultrasound Imaging Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital) Tongji Medical College Huazhong University of Science and Technology Wuhan China |
| authorships[3].author.id | https://openalex.org/A5038410066 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7838-8701 |
| authorships[3].author.display_name | Huageng Liang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210129222 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Urology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China |
| authorships[3].institutions[0].id | https://openalex.org/I4210129222 |
| authorships[3].institutions[0].ror | https://ror.org/0371fqr87 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210129222 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Wuhan Union Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huageng Liang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Urology Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan China |
| authorships[4].author.id | https://openalex.org/A5030456599 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4033-2507 |
| authorships[4].author.display_name | Pavel Shcherbakov |
| authorships[4].countries | RU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210157430 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute for Control Science Russian Academy of Sciences Moscow Russia |
| authorships[4].institutions[0].id | https://openalex.org/I4210157430 |
| authorships[4].institutions[0].ror | https://ror.org/05f3yt521 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I1313323035, https://openalex.org/I4210157430, https://openalex.org/I4210164537 |
| authorships[4].institutions[0].country_code | RU |
| authorships[4].institutions[0].display_name | V. A. Trapeznikov Institute of Control Sciences |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pavel Shcherbakov |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute for Control Science Russian Academy of Sciences Moscow Russia |
| authorships[5].author.id | https://openalex.org/A5101720039 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4332-071X |
| authorships[5].author.display_name | Xuming Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I47720641 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan China |
| authorships[5].institutions[0].id | https://openalex.org/I47720641 |
| authorships[5].institutions[0].ror | https://ror.org/00p991c53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I47720641 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Huazhong University of Science and Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xuming Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biomedical Engineering College of Life Science and Technology Huazhong University of Science and Technology Wuhan China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1049/cit2.12411 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | 3D medical image segmentation using the serial–parallel convolutional neural network and transformer based on cross‐window self‐attention |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12702 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9876000285148621 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2808 |
| primary_topic.subfield.display_name | Neurology |
| primary_topic.display_name | Brain Tumor Detection and Classification |
| related_works | https://openalex.org/W2390901981, https://openalex.org/W2109115373, https://openalex.org/W4391621807, https://openalex.org/W4230691760, https://openalex.org/W4391923333, https://openalex.org/W2393847170, https://openalex.org/W85049056, https://openalex.org/W158465905, https://openalex.org/W577521963, https://openalex.org/W1522196789 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1049/cit2.12411 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898415742 |
| best_oa_location.source.issn | 2468-2322, 2468-6557 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2468-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | CAAI Transactions on Intelligence Technology |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | CAAI Transactions on Intelligence Technology |
| best_oa_location.landing_page_url | https://doi.org/10.1049/cit2.12411 |
| primary_location.id | doi:10.1049/cit2.12411 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898415742 |
| primary_location.source.issn | 2468-2322, 2468-6557 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2468-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | CAAI Transactions on Intelligence Technology |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | CAAI Transactions on Intelligence Technology |
| primary_location.landing_page_url | https://doi.org/10.1049/cit2.12411 |
| publication_date | 2025-01-25 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3128009222, https://openalex.org/W2132116135, https://openalex.org/W2741033153, https://openalex.org/W3132455321, https://openalex.org/W2941137223, https://openalex.org/W3040152568, https://openalex.org/W3013198566, https://openalex.org/W3157386596, https://openalex.org/W4210442314, https://openalex.org/W4283515839, https://openalex.org/W4311088269, https://openalex.org/W4321240015, https://openalex.org/W2894802018, https://openalex.org/W2907750714, https://openalex.org/W2884436604, https://openalex.org/W3015788359, https://openalex.org/W3138516171, https://openalex.org/W3170544306, https://openalex.org/W4214893857, https://openalex.org/W3203841574, https://openalex.org/W4212875960, https://openalex.org/W3204255739, https://openalex.org/W4384159609, https://openalex.org/W2549139847, https://openalex.org/W4310077393, https://openalex.org/W2962914239, https://openalex.org/W3093394156, https://openalex.org/W3194662286, https://openalex.org/W2923346856, https://openalex.org/W4382404966, https://openalex.org/W3015281913, https://openalex.org/W3040717749, https://openalex.org/W2106033751, https://openalex.org/W3025870037, https://openalex.org/W3023742835, https://openalex.org/W3211490618, https://openalex.org/W3102875249, https://openalex.org/W3112701542, https://openalex.org/W4376548770 |
| referenced_works_count | 39 |
| abstract_inverted_index.a | 59 |
| abstract_inverted_index.3D | 69, 117 |
| abstract_inverted_index.In | 56 |
| abstract_inverted_index.as | 185 |
| abstract_inverted_index.be | 54 |
| abstract_inverted_index.by | 73, 115, 135 |
| abstract_inverted_index.in | 11, 27, 177 |
| abstract_inverted_index.is | 9, 47, 64 |
| abstract_inverted_index.it | 24, 42 |
| abstract_inverted_index.of | 89, 168 |
| abstract_inverted_index.on | 155 |
| abstract_inverted_index.to | 16, 43, 147 |
| abstract_inverted_index.95% | 192 |
| abstract_inverted_index.CNN | 75 |
| abstract_inverted_index.MLE | 130 |
| abstract_inverted_index.The | 32, 86, 107, 129, 153 |
| abstract_inverted_index.and | 49, 61, 76, 78, 101, 122, 144, 159, 181, 195 |
| abstract_inverted_index.but | 23, 40 |
| abstract_inverted_index.can | 34, 53 |
| abstract_inverted_index.due | 15 |
| abstract_inverted_index.for | 66 |
| abstract_inverted_index.its | 17, 50 |
| abstract_inverted_index.six | 173 |
| abstract_inverted_index.the | 6, 29, 36, 67, 90, 94, 111, 137, 149, 156, 166, 169 |
| abstract_inverted_index.CWST | 108 |
| abstract_inverted_index.both | 178 |
| abstract_inverted_index.core | 87 |
| abstract_inverted_index.dice | 186 |
| abstract_inverted_index.into | 119 |
| abstract_inverted_index.over | 172, 190 |
| abstract_inverted_index.such | 184 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.uses | 145 |
| abstract_inverted_index.well | 39 |
| abstract_inverted_index.with | 5 |
| abstract_inverted_index.(CNN) | 4 |
| abstract_inverted_index.(MLE) | 105 |
| abstract_inverted_index.MR/CT | 161 |
| abstract_inverted_index.based | 98 |
| abstract_inverted_index.cross | 95 |
| abstract_inverted_index.dense | 150 |
| abstract_inverted_index.faces | 25 |
| abstract_inverted_index.fuses | 133 |
| abstract_inverted_index.image | 13, 71, 162 |
| abstract_inverted_index.local | 19, 103, 151 |
| abstract_inverted_index.small | 44 |
| abstract_inverted_index.voxel | 138 |
| abstract_inverted_index.work, | 58 |
| abstract_inverted_index.(CWST) | 100 |
| abstract_inverted_index.Union, | 191 |
| abstract_inverted_index.across | 82 |
| abstract_inverted_index.branch | 142 |
| abstract_inverted_index.global | 30, 37, 112, 125 |
| abstract_inverted_index.heavy. | 55 |
| abstract_inverted_index.images | 118 |
| abstract_inverted_index.method | 92, 171 |
| abstract_inverted_index.models | 176 |
| abstract_inverted_index.module | 109, 131 |
| abstract_inverted_index.neural | 2 |
| abstract_inverted_index.serial | 60 |
| abstract_inverted_index.sparse | 124 |
| abstract_inverted_index.window | 96 |
| abstract_inverted_index.ability | 22 |
| abstract_inverted_index.atrium, | 158 |
| abstract_inverted_index.average | 196 |
| abstract_inverted_index.between | 127, 140 |
| abstract_inverted_index.context | 113 |
| abstract_inverted_index.extract | 35 |
| abstract_inverted_index.feature | 20, 80 |
| abstract_inverted_index.include | 93 |
| abstract_inverted_index.indexes | 183 |
| abstract_inverted_index.levels. | 85 |
| abstract_inverted_index.medical | 12, 45, 70 |
| abstract_inverted_index.network | 3, 63 |
| abstract_inverted_index.popular | 10, 174 |
| abstract_inverted_index.surface | 198 |
| abstract_inverted_index.various | 83 |
| abstract_inverted_index.windows | 121 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.accurate | 68 |
| abstract_inverted_index.adapting | 41 |
| abstract_inverted_index.datasets | 46, 163 |
| abstract_inverted_index.distance | 194 |
| abstract_inverted_index.enhanced | 104 |
| abstract_inverted_index.enhances | 110 |
| abstract_inverted_index.feature. | 31 |
| abstract_inverted_index.features | 134 |
| abstract_inverted_index.modules. | 106 |
| abstract_inverted_index.pancreas | 160 |
| abstract_inverted_index.parallel | 62 |
| abstract_inverted_index.proposed | 65, 91, 170 |
| abstract_inverted_index.semantic | 84 |
| abstract_inverted_index.windows. | 128 |
| abstract_inverted_index.Hausdorff | 193 |
| abstract_inverted_index.advantage | 167 |
| abstract_inverted_index.attention | 126, 139 |
| abstract_inverted_index.capturing | 28 |
| abstract_inverted_index.combining | 74 |
| abstract_inverted_index.computing | 136 |
| abstract_inverted_index.different | 141 |
| abstract_inverted_index.distance. | 199 |
| abstract_inverted_index.excellent | 18 |
| abstract_inverted_index.features, | 143 |
| abstract_inverted_index.promoting | 79 |
| abstract_inverted_index.prostate, | 157 |
| abstract_inverted_index.structure | 8 |
| abstract_inverted_index.symmetric | 197 |
| abstract_inverted_index.complexity | 52 |
| abstract_inverted_index.components | 88 |
| abstract_inverted_index.evaluation | 180 |
| abstract_inverted_index.extraction | 21 |
| abstract_inverted_index.similarity | 187 |
| abstract_inverted_index.strengthen | 148 |
| abstract_inverted_index.calculating | 123 |
| abstract_inverted_index.challenging | 48 |
| abstract_inverted_index.convolution | 146 |
| abstract_inverted_index.demonstrate | 165 |
| abstract_inverted_index.experiments | 154 |
| abstract_inverted_index.information | 38 |
| abstract_inverted_index.limitations | 26 |
| abstract_inverted_index.qualitative | 179 |
| abstract_inverted_index.selectively | 132 |
| abstract_inverted_index.transformer | 33, 77, 99 |
| abstract_inverted_index.Intersection | 189 |
| abstract_inverted_index.coefficient, | 188 |
| abstract_inverted_index.consistently | 164 |
| abstract_inverted_index.information. | 152 |
| abstract_inverted_index.interactions | 81 |
| abstract_inverted_index.partitioning | 116 |
| abstract_inverted_index.quantitative | 182 |
| abstract_inverted_index.segmentation | 14, 72, 175 |
| abstract_inverted_index.Convolutional | 1 |
| abstract_inverted_index.computational | 51 |
| abstract_inverted_index.multi‐scale | 102 |
| abstract_inverted_index.understanding | 114 |
| abstract_inverted_index.self‐attention | 97 |
| abstract_inverted_index.encoder–decoder | 7 |
| abstract_inverted_index.non‐overlapping | 120 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.92496079 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |