3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure Prior Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2003.14052
The goal of the Semantic Scene Completion (SSC) task is to simultaneously predict a completed 3D voxel representation of volumetric occupancy and semantic labels of objects in the scene from a single-view observation. Since the computational cost generally increases explosively along with the growth of voxel resolution, most current state-of-the-arts have to tailor their framework into a low-resolution representation with the sacrifice of detail prediction. Thus, voxel resolution becomes one of the crucial difficulties that lead to the performance bottleneck. In this paper, we propose to devise a new geometry-based strategy to embed depth information with low-resolution voxel representation, which could still be able to encode sufficient geometric information, e.g., room layout, object's sizes and shapes, to infer the invisible areas of the scene with well structure-preserving details. To this end, we first propose a novel 3D sketch-aware feature embedding to explicitly encode geometric information effectively and efficiently. With the 3D sketch in hand, we further devise a simple yet effective semantic scene completion framework that incorporates a light-weight 3D Sketch Hallucination module to guide the inference of occupancy and the semantic labels via a semi-supervised structure prior learning strategy. We demonstrate that our proposed geometric embedding works better than the depth feature learning from habitual SSC frameworks. Our final model surpasses state-of-the-arts consistently on three public benchmarks, which only requires 3D volumes of 60 x 36 x 60 resolution for both input and output. The code and the supplementary material will be available at https://charlesCXK.github.io.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2003.14052
- https://arxiv.org/pdf/2003.14052
- OA Status
- green
- Cited By
- 13
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3014459315
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3014459315Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2003.14052Digital Object Identifier
- Title
-
3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure PriorWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-31Full publication date if available
- Authors
-
Xiaokang Chen, Kwan-Yee Lin, Qian Chen, Gang Zeng, Hongsheng LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2003.14052Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2003.14052Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2003.14052Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Feature (linguistics), Sketch, Representation (politics), Embedding, Voxel, Inference, Object (grammar), Computer vision, Feature learning, Pattern recognition (psychology), Natural language processing, Algorithm, Politics, Philosophy, Law, Political science, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 3, 2023: 3, 2022: 3, 2021: 3Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3014459315 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2003.14052 |
| ids.doi | https://doi.org/10.48550/arxiv.2003.14052 |
| ids.mag | 3014459315 |
| ids.openalex | https://openalex.org/W3014459315 |
| fwci | |
| type | preprint |
| title | 3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure Prior |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10531 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Vision and Imaging |
| topics[1].id | https://openalex.org/T10481 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9994000196456909 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1704 |
| topics[1].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[1].display_name | Computer Graphics and Visualization Techniques |
| topics[2].id | https://openalex.org/T10719 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9991999864578247 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | 3D Shape Modeling and Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7763224840164185 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7046688795089722 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2776401178 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6446614861488342 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[2].display_name | Feature (linguistics) |
| concepts[3].id | https://openalex.org/C2779231336 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5839931964874268 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7534724 |
| concepts[3].display_name | Sketch |
| concepts[4].id | https://openalex.org/C2776359362 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5606757402420044 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[4].display_name | Representation (politics) |
| concepts[5].id | https://openalex.org/C41608201 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5485842227935791 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[5].display_name | Embedding |
| concepts[6].id | https://openalex.org/C54170458 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5433709025382996 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q663554 |
| concepts[6].display_name | Voxel |
| concepts[7].id | https://openalex.org/C2776214188 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4786314070224762 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[7].display_name | Inference |
| concepts[8].id | https://openalex.org/C2781238097 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47658297419548035 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[8].display_name | Object (grammar) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4647155702114105 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C59404180 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42662715911865234 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[10].display_name | Feature learning |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41516605019569397 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C204321447 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3311030864715576 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[12].display_name | Natural language processing |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.1421634554862976 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C94625758 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[14].display_name | Politics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C199539241 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[16].display_name | Law |
| concepts[17].id | https://openalex.org/C17744445 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[17].display_name | Political science |
| concepts[18].id | https://openalex.org/C41895202 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[18].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7763224840164185 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7046688795089722 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/feature |
| keywords[2].score | 0.6446614861488342 |
| keywords[2].display_name | Feature (linguistics) |
| keywords[3].id | https://openalex.org/keywords/sketch |
| keywords[3].score | 0.5839931964874268 |
| keywords[3].display_name | Sketch |
| keywords[4].id | https://openalex.org/keywords/representation |
| keywords[4].score | 0.5606757402420044 |
| keywords[4].display_name | Representation (politics) |
| keywords[5].id | https://openalex.org/keywords/embedding |
| keywords[5].score | 0.5485842227935791 |
| keywords[5].display_name | Embedding |
| keywords[6].id | https://openalex.org/keywords/voxel |
| keywords[6].score | 0.5433709025382996 |
| keywords[6].display_name | Voxel |
| keywords[7].id | https://openalex.org/keywords/inference |
| keywords[7].score | 0.4786314070224762 |
| keywords[7].display_name | Inference |
| keywords[8].id | https://openalex.org/keywords/object |
| keywords[8].score | 0.47658297419548035 |
| keywords[8].display_name | Object (grammar) |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.4647155702114105 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/feature-learning |
| keywords[10].score | 0.42662715911865234 |
| keywords[10].display_name | Feature learning |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.41516605019569397 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/natural-language-processing |
| keywords[12].score | 0.3311030864715576 |
| keywords[12].display_name | Natural language processing |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.1421634554862976 |
| keywords[13].display_name | Algorithm |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2003.14052 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2003.14052 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2003.14052 |
| locations[1].id | doi:10.48550/arxiv.2003.14052 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2003.14052 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101412833 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6188-5821 |
| authorships[0].author.display_name | Xiaokang Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Machine Perception (MOE), School of EECS, Peking University |
| authorships[0].institutions[0].id | https://openalex.org/I20231570 |
| authorships[0].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Peking University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaokang Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Machine Perception (MOE), School of EECS, Peking University |
| authorships[1].author.id | https://openalex.org/A5046965918 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0175-6398 |
| authorships[1].author.display_name | Kwan-Yee Lin |
| authorships[1].affiliations[0].raw_affiliation_string | SenseTime Research |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kwan-Yee Lin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | SenseTime Research |
| authorships[2].author.id | https://openalex.org/A5100428456 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1909-302X |
| authorships[2].author.display_name | Qian Chen |
| authorships[2].affiliations[0].raw_affiliation_string | SenseTime Research |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chen Qian |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | SenseTime Research |
| authorships[3].author.id | https://openalex.org/A5103205993 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9575-4651 |
| authorships[3].author.display_name | Gang Zeng |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Machine Perception (MOE), School of EECS, Peking University |
| authorships[3].institutions[0].id | https://openalex.org/I20231570 |
| authorships[3].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Peking University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gang Zeng |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Machine Perception (MOE), School of EECS, Peking University |
| authorships[4].author.id | https://openalex.org/A5100732450 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2664-7975 |
| authorships[4].author.display_name | Hongsheng Li |
| authorships[4].countries | HK |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I177725633 |
| authorships[4].affiliations[0].raw_affiliation_string | The Chinese University of Hong Kong |
| authorships[4].institutions[0].id | https://openalex.org/I177725633 |
| authorships[4].institutions[0].ror | https://ror.org/00t33hh48 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I177725633 |
| authorships[4].institutions[0].country_code | HK |
| authorships[4].institutions[0].display_name | Chinese University of Hong Kong |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Hongsheng Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Chinese University of Hong Kong |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2003.14052 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-04-10T00:00:00 |
| display_name | 3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure Prior |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10531 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Vision and Imaging |
| related_works | https://openalex.org/W2378994405, https://openalex.org/W2385974820, https://openalex.org/W2373478030, https://openalex.org/W2378679551, https://openalex.org/W3149739944, https://openalex.org/W2392363776, https://openalex.org/W2063051341, https://openalex.org/W2591066345, https://openalex.org/W1494563618, https://openalex.org/W2357022711 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2003.14052 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2003.14052 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2003.14052 |
| primary_location.id | pmh:oai:arXiv.org:2003.14052 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2003.14052 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2003.14052 |
| publication_date | 2020-03-31 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W4241071816, https://openalex.org/W2145023731, https://openalex.org/W2948500402, https://openalex.org/W2963419579, https://openalex.org/W1836465849, https://openalex.org/W1995628331, https://openalex.org/W2086984226, https://openalex.org/W2962963674, https://openalex.org/W2991471181, https://openalex.org/W2188365844, https://openalex.org/W2194775991, https://openalex.org/W2963307292, https://openalex.org/W2968459013, https://openalex.org/W2152571752, https://openalex.org/W3104468713, https://openalex.org/W4230738288, https://openalex.org/W2798314605, https://openalex.org/W2598666589, https://openalex.org/W2560622558, https://openalex.org/W2049351243, https://openalex.org/W2519126067, https://openalex.org/W2268816372, https://openalex.org/W2962774226, https://openalex.org/W2888815532, https://openalex.org/W2108598243, https://openalex.org/W2963789946, https://openalex.org/W2953881420, https://openalex.org/W125693051, https://openalex.org/W2891464919, https://openalex.org/W2949117887, https://openalex.org/W2557465155, https://openalex.org/W2300687442, https://openalex.org/W2965451719, https://openalex.org/W2444097022, https://openalex.org/W1990345222, https://openalex.org/W2799166040, https://openalex.org/W2964160369, https://openalex.org/W2886499109, https://openalex.org/W2963766190, https://openalex.org/W4250533120, https://openalex.org/W2963727650, https://openalex.org/W2981604966, https://openalex.org/W2097374608, https://openalex.org/W2559882727, https://openalex.org/W3009205130, https://openalex.org/W2097307110 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 13, 30, 56, 87, 134, 157, 167, 184 |
| abstract_inverted_index.x | 225, 227 |
| abstract_inverted_index.36 | 226 |
| abstract_inverted_index.3D | 15, 136, 150, 169, 221 |
| abstract_inverted_index.60 | 224, 228 |
| abstract_inverted_index.In | 80 |
| abstract_inverted_index.To | 128 |
| abstract_inverted_index.We | 190 |
| abstract_inverted_index.at | 244 |
| abstract_inverted_index.be | 102, 242 |
| abstract_inverted_index.in | 26, 152 |
| abstract_inverted_index.is | 9 |
| abstract_inverted_index.of | 2, 18, 24, 44, 62, 70, 121, 177, 223 |
| abstract_inverted_index.on | 214 |
| abstract_inverted_index.to | 10, 51, 76, 85, 91, 104, 116, 140, 173 |
| abstract_inverted_index.we | 83, 131, 154 |
| abstract_inverted_index.Our | 208 |
| abstract_inverted_index.SSC | 206 |
| abstract_inverted_index.The | 0, 235 |
| abstract_inverted_index.and | 21, 114, 146, 179, 233, 237 |
| abstract_inverted_index.for | 230 |
| abstract_inverted_index.new | 88 |
| abstract_inverted_index.one | 69 |
| abstract_inverted_index.our | 193 |
| abstract_inverted_index.the | 3, 27, 34, 42, 60, 71, 77, 118, 122, 149, 175, 180, 200, 238 |
| abstract_inverted_index.via | 183 |
| abstract_inverted_index.yet | 159 |
| abstract_inverted_index.With | 148 |
| abstract_inverted_index.able | 103 |
| abstract_inverted_index.both | 231 |
| abstract_inverted_index.code | 236 |
| abstract_inverted_index.cost | 36 |
| abstract_inverted_index.end, | 130 |
| abstract_inverted_index.from | 29, 204 |
| abstract_inverted_index.goal | 1 |
| abstract_inverted_index.have | 50 |
| abstract_inverted_index.into | 55 |
| abstract_inverted_index.lead | 75 |
| abstract_inverted_index.most | 47 |
| abstract_inverted_index.only | 219 |
| abstract_inverted_index.room | 110 |
| abstract_inverted_index.task | 8 |
| abstract_inverted_index.than | 199 |
| abstract_inverted_index.that | 74, 165, 192 |
| abstract_inverted_index.this | 81, 129 |
| abstract_inverted_index.well | 125 |
| abstract_inverted_index.will | 241 |
| abstract_inverted_index.with | 41, 59, 95, 124 |
| abstract_inverted_index.(SSC) | 7 |
| abstract_inverted_index.Scene | 5 |
| abstract_inverted_index.Since | 33 |
| abstract_inverted_index.Thus, | 65 |
| abstract_inverted_index.along | 40 |
| abstract_inverted_index.areas | 120 |
| abstract_inverted_index.could | 100 |
| abstract_inverted_index.depth | 93, 201 |
| abstract_inverted_index.e.g., | 109 |
| abstract_inverted_index.embed | 92 |
| abstract_inverted_index.final | 209 |
| abstract_inverted_index.first | 132 |
| abstract_inverted_index.guide | 174 |
| abstract_inverted_index.hand, | 153 |
| abstract_inverted_index.infer | 117 |
| abstract_inverted_index.input | 232 |
| abstract_inverted_index.model | 210 |
| abstract_inverted_index.novel | 135 |
| abstract_inverted_index.prior | 187 |
| abstract_inverted_index.scene | 28, 123, 162 |
| abstract_inverted_index.sizes | 113 |
| abstract_inverted_index.still | 101 |
| abstract_inverted_index.their | 53 |
| abstract_inverted_index.three | 215 |
| abstract_inverted_index.voxel | 16, 45, 66, 97 |
| abstract_inverted_index.which | 99, 218 |
| abstract_inverted_index.works | 197 |
| abstract_inverted_index.Sketch | 170 |
| abstract_inverted_index.better | 198 |
| abstract_inverted_index.detail | 63 |
| abstract_inverted_index.devise | 86, 156 |
| abstract_inverted_index.encode | 105, 142 |
| abstract_inverted_index.growth | 43 |
| abstract_inverted_index.labels | 23, 182 |
| abstract_inverted_index.module | 172 |
| abstract_inverted_index.paper, | 82 |
| abstract_inverted_index.public | 216 |
| abstract_inverted_index.simple | 158 |
| abstract_inverted_index.sketch | 151 |
| abstract_inverted_index.tailor | 52 |
| abstract_inverted_index.becomes | 68 |
| abstract_inverted_index.crucial | 72 |
| abstract_inverted_index.current | 48 |
| abstract_inverted_index.feature | 138, 202 |
| abstract_inverted_index.further | 155 |
| abstract_inverted_index.layout, | 111 |
| abstract_inverted_index.objects | 25 |
| abstract_inverted_index.output. | 234 |
| abstract_inverted_index.predict | 12 |
| abstract_inverted_index.propose | 84, 133 |
| abstract_inverted_index.shapes, | 115 |
| abstract_inverted_index.volumes | 222 |
| abstract_inverted_index.Semantic | 4 |
| abstract_inverted_index.details. | 127 |
| abstract_inverted_index.habitual | 205 |
| abstract_inverted_index.learning | 188, 203 |
| abstract_inverted_index.material | 240 |
| abstract_inverted_index.object's | 112 |
| abstract_inverted_index.proposed | 194 |
| abstract_inverted_index.requires | 220 |
| abstract_inverted_index.semantic | 22, 161, 181 |
| abstract_inverted_index.strategy | 90 |
| abstract_inverted_index.available | 243 |
| abstract_inverted_index.completed | 14 |
| abstract_inverted_index.effective | 160 |
| abstract_inverted_index.embedding | 139, 196 |
| abstract_inverted_index.framework | 54, 164 |
| abstract_inverted_index.generally | 37 |
| abstract_inverted_index.geometric | 107, 143, 195 |
| abstract_inverted_index.increases | 38 |
| abstract_inverted_index.inference | 176 |
| abstract_inverted_index.invisible | 119 |
| abstract_inverted_index.occupancy | 20, 178 |
| abstract_inverted_index.sacrifice | 61 |
| abstract_inverted_index.strategy. | 189 |
| abstract_inverted_index.structure | 186 |
| abstract_inverted_index.surpasses | 211 |
| abstract_inverted_index.Completion | 6 |
| abstract_inverted_index.completion | 163 |
| abstract_inverted_index.explicitly | 141 |
| abstract_inverted_index.resolution | 67, 229 |
| abstract_inverted_index.sufficient | 106 |
| abstract_inverted_index.volumetric | 19 |
| abstract_inverted_index.benchmarks, | 217 |
| abstract_inverted_index.bottleneck. | 79 |
| abstract_inverted_index.demonstrate | 191 |
| abstract_inverted_index.effectively | 145 |
| abstract_inverted_index.explosively | 39 |
| abstract_inverted_index.frameworks. | 207 |
| abstract_inverted_index.information | 94, 144 |
| abstract_inverted_index.performance | 78 |
| abstract_inverted_index.prediction. | 64 |
| abstract_inverted_index.resolution, | 46 |
| abstract_inverted_index.single-view | 31 |
| abstract_inverted_index.consistently | 213 |
| abstract_inverted_index.difficulties | 73 |
| abstract_inverted_index.efficiently. | 147 |
| abstract_inverted_index.incorporates | 166 |
| abstract_inverted_index.information, | 108 |
| abstract_inverted_index.light-weight | 168 |
| abstract_inverted_index.observation. | 32 |
| abstract_inverted_index.sketch-aware | 137 |
| abstract_inverted_index.Hallucination | 171 |
| abstract_inverted_index.computational | 35 |
| abstract_inverted_index.supplementary | 239 |
| abstract_inverted_index.geometry-based | 89 |
| abstract_inverted_index.low-resolution | 57, 96 |
| abstract_inverted_index.representation | 17, 58 |
| abstract_inverted_index.simultaneously | 11 |
| abstract_inverted_index.representation, | 98 |
| abstract_inverted_index.semi-supervised | 185 |
| abstract_inverted_index.state-of-the-arts | 49, 212 |
| abstract_inverted_index.structure-preserving | 126 |
| abstract_inverted_index.https://charlesCXK.github.io. | 245 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |