3DT-CM: A Low-complexity Cross-matching Algorithm for Large Astronomical Catalogues Using 3d-tree Approach Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1088/1674-4527/acee50
Location-based cross-matching is a preprocessing step in astronomy that aims to identify records belonging to the same celestial body based on the angular distance formula. The traditional approach involves comparing each record in one catalog with every record in the other catalog, resulting in a one-to-one comparison with high computational complexity. To reduce the computational time, index partitioning methods are used to divide the sky into regions and perform local cross-matching. In addition, cross-matching algorithms have been adopted on high-performance architectures to improve their efficiency. But the index partitioning methods and computation architectures only increase the degree of parallelism, and cannot decrease the complexity of pairwise-based cross-matching algorithm itself. A better algorithm is needed to further improve the performance of cross-matching algorithm. In this paper, we propose a 3d-tree-based cross-matching algorithm that converts the angular distance formula into an equivalent 3d Euclidean distance and uses 3d-tree method to reduce the overall computational complexity and to avoid boundary issues. Furthermore, we demonstrate the superiority of the 3d-tree approach over the 2d-tree method and implement it using a multi-threading technique during both the construction and querying phases. We have experimentally evaluated the proposed 3d-tree cross-matching algorithm using publicly available catalog data. The results show that our algorithm applied on two 32-core CPUs achieves equivalent performance than previous experiments conducted on a six-node CPU-GPU cluster.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/1674-4527/acee50
- OA Status
- hybrid
- References
- 21
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385649199
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385649199Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1674-4527/acee50Digital Object Identifier
- Title
-
3DT-CM: A Low-complexity Cross-matching Algorithm for Large Astronomical Catalogues Using 3d-tree ApproachWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-08Full publication date if available
- Authors
-
Yifei Mu, Ce Yu, Chao Sun, Kun Li, Yajie Zhang, Jizeng Wei, Jian Xiao, Jie WangList of authors in order
- Landing page
-
https://doi.org/10.1088/1674-4527/acee50Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1674-4527/acee50Direct OA link when available
- Concepts
-
Matching (statistics), Tree (set theory), Algorithm, Computational complexity theory, Computer science, Blossom algorithm, Time complexity, Pairwise comparison, Node (physics), Physics, Mathematics, Artificial intelligence, Statistics, Mathematical analysis, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
21Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385649199 |
|---|---|
| doi | https://doi.org/10.1088/1674-4527/acee50 |
| ids.doi | https://doi.org/10.1088/1674-4527/acee50 |
| ids.openalex | https://openalex.org/W4385649199 |
| fwci | 0.0 |
| type | article |
| title | 3DT-CM: A Low-complexity Cross-matching Algorithm for Large Astronomical Catalogues Using 3d-tree Approach |
| biblio.issue | 10 |
| biblio.volume | 23 |
| biblio.last_page | 105011 |
| biblio.first_page | 105011 |
| topics[0].id | https://openalex.org/T11106 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9480000138282776 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Data Management and Algorithms |
| topics[1].id | https://openalex.org/T11269 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.946399986743927 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Algorithms and Data Compression |
| topics[2].id | https://openalex.org/T10054 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9032999873161316 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1708 |
| topics[2].subfield.display_name | Hardware and Architecture |
| topics[2].display_name | Parallel Computing and Optimization Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C165064840 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7023760080337524 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1321061 |
| concepts[0].display_name | Matching (statistics) |
| concepts[1].id | https://openalex.org/C113174947 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6937181949615479 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2859736 |
| concepts[1].display_name | Tree (set theory) |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6362305879592896 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C179799912 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5971640348434448 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q205084 |
| concepts[3].display_name | Computational complexity theory |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5553544759750366 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C61455927 |
| concepts[5].level | 3 |
| concepts[5].score | 0.47938966751098633 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1030529 |
| concepts[5].display_name | Blossom algorithm |
| concepts[6].id | https://openalex.org/C311688 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4705745577812195 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2393193 |
| concepts[6].display_name | Time complexity |
| concepts[7].id | https://openalex.org/C184898388 |
| concepts[7].level | 2 |
| concepts[7].score | 0.46722421050071716 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1435712 |
| concepts[7].display_name | Pairwise comparison |
| concepts[8].id | https://openalex.org/C62611344 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4413776397705078 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[8].display_name | Node (physics) |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1550564467906952 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13062703609466553 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11634168028831482 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/matching |
| keywords[0].score | 0.7023760080337524 |
| keywords[0].display_name | Matching (statistics) |
| keywords[1].id | https://openalex.org/keywords/tree |
| keywords[1].score | 0.6937181949615479 |
| keywords[1].display_name | Tree (set theory) |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.6362305879592896 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/computational-complexity-theory |
| keywords[3].score | 0.5971640348434448 |
| keywords[3].display_name | Computational complexity theory |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5553544759750366 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/blossom-algorithm |
| keywords[5].score | 0.47938966751098633 |
| keywords[5].display_name | Blossom algorithm |
| keywords[6].id | https://openalex.org/keywords/time-complexity |
| keywords[6].score | 0.4705745577812195 |
| keywords[6].display_name | Time complexity |
| keywords[7].id | https://openalex.org/keywords/pairwise-comparison |
| keywords[7].score | 0.46722421050071716 |
| keywords[7].display_name | Pairwise comparison |
| keywords[8].id | https://openalex.org/keywords/node |
| keywords[8].score | 0.4413776397705078 |
| keywords[8].display_name | Node (physics) |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.1550564467906952 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.13062703609466553 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.11634168028831482 |
| keywords[11].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1088/1674-4527/acee50 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S174657117 |
| locations[0].source.issn | 1674-4527, 2397-6209 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1674-4527 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research in Astronomy and Astrophysics |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Research in Astronomy and Astrophysics |
| locations[0].landing_page_url | https://doi.org/10.1088/1674-4527/acee50 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5006813535 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-7599-566X |
| authorships[0].author.display_name | Yifei Mu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210164952 |
| authorships[0].affiliations[0].raw_affiliation_string | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[0].institutions[0].id | https://openalex.org/I4210164952 |
| authorships[0].institutions[0].ror | https://ror.org/05m762q77 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210164952 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Tianjin haihe hospital |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yifei Mu |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[1].author.id | https://openalex.org/A5055658279 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2416-4547 |
| authorships[1].author.display_name | Ce Yu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162868743 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Intelligence and Computing, Tianjin University, Weijin Road 92, Nankai District, Tianjin, Tianjin, 300072, CHINA |
| authorships[1].institutions[0].id | https://openalex.org/I162868743 |
| authorships[1].institutions[0].ror | https://ror.org/012tb2g32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162868743 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Tianjin University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ce Yu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Intelligence and Computing, Tianjin University, Weijin Road 92, Nankai District, Tianjin, Tianjin, 300072, CHINA |
| authorships[2].author.id | https://openalex.org/A5100682386 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4183-7168 |
| authorships[2].author.display_name | Chao Sun |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210164952 |
| authorships[2].affiliations[0].raw_affiliation_string | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[2].institutions[0].id | https://openalex.org/I4210164952 |
| authorships[2].institutions[0].ror | https://ror.org/05m762q77 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210164952 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Tianjin haihe hospital |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chao Sun |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[3].author.id | https://openalex.org/A5100377539 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2705-6229 |
| authorships[3].author.display_name | Kun Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210164952 |
| authorships[3].affiliations[0].raw_affiliation_string | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[3].institutions[0].id | https://openalex.org/I4210164952 |
| authorships[3].institutions[0].ror | https://ror.org/05m762q77 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210164952 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Tianjin haihe hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kun Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[4].author.id | https://openalex.org/A5079247663 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5824-7741 |
| authorships[4].author.display_name | Yajie Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210164952 |
| authorships[4].affiliations[0].raw_affiliation_string | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[4].institutions[0].id | https://openalex.org/I4210164952 |
| authorships[4].institutions[0].ror | https://ror.org/05m762q77 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210164952 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Tianjin haihe hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Yajie Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[5].author.id | https://openalex.org/A5102122678 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3040-6859 |
| authorships[5].author.display_name | Jizeng Wei |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210164952 |
| authorships[5].affiliations[0].raw_affiliation_string | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[5].institutions[0].id | https://openalex.org/I4210164952 |
| authorships[5].institutions[0].ror | https://ror.org/05m762q77 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210164952 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Tianjin haihe hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jizeng Wei |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[6].author.id | https://openalex.org/A5086967820 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0978-1280 |
| authorships[6].author.display_name | Jian Xiao |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210164952 |
| authorships[6].affiliations[0].raw_affiliation_string | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[6].institutions[0].id | https://openalex.org/I4210164952 |
| authorships[6].institutions[0].ror | https://ror.org/05m762q77 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210164952 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Tianjin haihe hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jian Xiao |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | , No. 135 Yaguan Road, Haihe Education Park, Tianjin, Tianjin, 300350, CHINA |
| authorships[7].author.id | https://openalex.org/A5100658194 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0380-6395 |
| authorships[7].author.display_name | Jie Wang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210164580 |
| authorships[7].affiliations[0].raw_affiliation_string | National Astronomical Observatories Chinese Academy of Sciences, Chaoyang-qu, Beijing, 100012, CHINA |
| authorships[7].institutions[0].id | https://openalex.org/I19820366 |
| authorships[7].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[7].institutions[0].type | government |
| authorships[7].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[7].institutions[1].id | https://openalex.org/I4210164580 |
| authorships[7].institutions[1].ror | https://ror.org/058pyyv44 |
| authorships[7].institutions[1].type | facility |
| authorships[7].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210164580 |
| authorships[7].institutions[1].country_code | CN |
| authorships[7].institutions[1].display_name | National Astronomical Observatories |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Jie Wang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | National Astronomical Observatories Chinese Academy of Sciences, Chaoyang-qu, Beijing, 100012, CHINA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/1674-4527/acee50 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | 3DT-CM: A Low-complexity Cross-matching Algorithm for Large Astronomical Catalogues Using 3d-tree Approach |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11106 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9480000138282776 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Data Management and Algorithms |
| related_works | https://openalex.org/W2487162673, https://openalex.org/W2942366970, https://openalex.org/W2793211469, https://openalex.org/W2949152769, https://openalex.org/W4372354731, https://openalex.org/W2170725231, https://openalex.org/W1589381382, https://openalex.org/W961142965, https://openalex.org/W2375526705, https://openalex.org/W122605929 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1674-4527/acee50 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S174657117 |
| best_oa_location.source.issn | 1674-4527, 2397-6209 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1674-4527 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research in Astronomy and Astrophysics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Research in Astronomy and Astrophysics |
| best_oa_location.landing_page_url | https://doi.org/10.1088/1674-4527/acee50 |
| primary_location.id | doi:10.1088/1674-4527/acee50 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S174657117 |
| primary_location.source.issn | 1674-4527, 2397-6209 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1674-4527 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research in Astronomy and Astrophysics |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Research in Astronomy and Astrophysics |
| primary_location.landing_page_url | https://doi.org/10.1088/1674-4527/acee50 |
| publication_date | 2023-08-08 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2887779282, https://openalex.org/W4376107001, https://openalex.org/W4240361406, https://openalex.org/W2002659377, https://openalex.org/W2091987948, https://openalex.org/W4242311554, https://openalex.org/W2514367058, https://openalex.org/W2923692969, https://openalex.org/W2593653325, https://openalex.org/W2962703202, https://openalex.org/W2800570535, https://openalex.org/W2890817474, https://openalex.org/W3034800339, https://openalex.org/W2953875011, https://openalex.org/W4315434542, https://openalex.org/W4214596219, https://openalex.org/W3105086926, https://openalex.org/W3100710579, https://openalex.org/W3101330698, https://openalex.org/W3100227188, https://openalex.org/W3105599499 |
| referenced_works_count | 21 |
| abstract_inverted_index.A | 110 |
| abstract_inverted_index.a | 4, 45, 128, 176, 219 |
| abstract_inverted_index.3d | 141 |
| abstract_inverted_index.In | 72, 123 |
| abstract_inverted_index.To | 52 |
| abstract_inverted_index.We | 186 |
| abstract_inverted_index.an | 139 |
| abstract_inverted_index.in | 7, 33, 39, 44 |
| abstract_inverted_index.is | 3, 113 |
| abstract_inverted_index.it | 174 |
| abstract_inverted_index.of | 98, 105, 120, 164 |
| abstract_inverted_index.on | 21, 79, 207, 218 |
| abstract_inverted_index.to | 11, 15, 62, 82, 115, 148, 155 |
| abstract_inverted_index.we | 126, 160 |
| abstract_inverted_index.But | 86 |
| abstract_inverted_index.The | 26, 200 |
| abstract_inverted_index.and | 68, 91, 100, 144, 154, 172, 183 |
| abstract_inverted_index.are | 60 |
| abstract_inverted_index.one | 34 |
| abstract_inverted_index.our | 204 |
| abstract_inverted_index.sky | 65 |
| abstract_inverted_index.the | 16, 22, 40, 54, 64, 87, 96, 103, 118, 134, 150, 162, 165, 169, 181, 190 |
| abstract_inverted_index.two | 208 |
| abstract_inverted_index.CPUs | 210 |
| abstract_inverted_index.aims | 10 |
| abstract_inverted_index.been | 77 |
| abstract_inverted_index.body | 19 |
| abstract_inverted_index.both | 180 |
| abstract_inverted_index.each | 31 |
| abstract_inverted_index.have | 76, 187 |
| abstract_inverted_index.high | 49 |
| abstract_inverted_index.into | 66, 138 |
| abstract_inverted_index.only | 94 |
| abstract_inverted_index.over | 168 |
| abstract_inverted_index.same | 17 |
| abstract_inverted_index.show | 202 |
| abstract_inverted_index.step | 6 |
| abstract_inverted_index.than | 214 |
| abstract_inverted_index.that | 9, 132, 203 |
| abstract_inverted_index.this | 124 |
| abstract_inverted_index.used | 61 |
| abstract_inverted_index.uses | 145 |
| abstract_inverted_index.with | 36, 48 |
| abstract_inverted_index.avoid | 156 |
| abstract_inverted_index.based | 20 |
| abstract_inverted_index.data. | 199 |
| abstract_inverted_index.every | 37 |
| abstract_inverted_index.index | 57, 88 |
| abstract_inverted_index.local | 70 |
| abstract_inverted_index.other | 41 |
| abstract_inverted_index.their | 84 |
| abstract_inverted_index.time, | 56 |
| abstract_inverted_index.using | 175, 195 |
| abstract_inverted_index.better | 111 |
| abstract_inverted_index.cannot | 101 |
| abstract_inverted_index.degree | 97 |
| abstract_inverted_index.divide | 63 |
| abstract_inverted_index.during | 179 |
| abstract_inverted_index.method | 147, 171 |
| abstract_inverted_index.needed | 114 |
| abstract_inverted_index.paper, | 125 |
| abstract_inverted_index.record | 32, 38 |
| abstract_inverted_index.reduce | 53, 149 |
| abstract_inverted_index.2d-tree | 170 |
| abstract_inverted_index.32-core | 209 |
| abstract_inverted_index.3d-tree | 146, 166, 192 |
| abstract_inverted_index.CPU-GPU | 221 |
| abstract_inverted_index.adopted | 78 |
| abstract_inverted_index.angular | 23, 135 |
| abstract_inverted_index.applied | 206 |
| abstract_inverted_index.catalog | 35, 198 |
| abstract_inverted_index.formula | 137 |
| abstract_inverted_index.further | 116 |
| abstract_inverted_index.improve | 83, 117 |
| abstract_inverted_index.issues. | 158 |
| abstract_inverted_index.itself. | 109 |
| abstract_inverted_index.methods | 59, 90 |
| abstract_inverted_index.overall | 151 |
| abstract_inverted_index.perform | 69 |
| abstract_inverted_index.phases. | 185 |
| abstract_inverted_index.propose | 127 |
| abstract_inverted_index.records | 13 |
| abstract_inverted_index.regions | 67 |
| abstract_inverted_index.results | 201 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.achieves | 211 |
| abstract_inverted_index.approach | 28, 167 |
| abstract_inverted_index.boundary | 157 |
| abstract_inverted_index.catalog, | 42 |
| abstract_inverted_index.cluster. | 222 |
| abstract_inverted_index.converts | 133 |
| abstract_inverted_index.decrease | 102 |
| abstract_inverted_index.distance | 24, 136, 143 |
| abstract_inverted_index.formula. | 25 |
| abstract_inverted_index.identify | 12 |
| abstract_inverted_index.increase | 95 |
| abstract_inverted_index.involves | 29 |
| abstract_inverted_index.previous | 215 |
| abstract_inverted_index.proposed | 191 |
| abstract_inverted_index.publicly | 196 |
| abstract_inverted_index.querying | 184 |
| abstract_inverted_index.six-node | 220 |
| abstract_inverted_index.Euclidean | 142 |
| abstract_inverted_index.addition, | 73 |
| abstract_inverted_index.algorithm | 108, 112, 131, 194, 205 |
| abstract_inverted_index.astronomy | 8 |
| abstract_inverted_index.available | 197 |
| abstract_inverted_index.belonging | 14 |
| abstract_inverted_index.celestial | 18 |
| abstract_inverted_index.comparing | 30 |
| abstract_inverted_index.conducted | 217 |
| abstract_inverted_index.evaluated | 189 |
| abstract_inverted_index.implement | 173 |
| abstract_inverted_index.resulting | 43 |
| abstract_inverted_index.technique | 178 |
| abstract_inverted_index.algorithm. | 122 |
| abstract_inverted_index.algorithms | 75 |
| abstract_inverted_index.comparison | 47 |
| abstract_inverted_index.complexity | 104, 153 |
| abstract_inverted_index.equivalent | 140, 212 |
| abstract_inverted_index.one-to-one | 46 |
| abstract_inverted_index.complexity. | 51 |
| abstract_inverted_index.computation | 92 |
| abstract_inverted_index.demonstrate | 161 |
| abstract_inverted_index.efficiency. | 85 |
| abstract_inverted_index.experiments | 216 |
| abstract_inverted_index.performance | 119, 213 |
| abstract_inverted_index.superiority | 163 |
| abstract_inverted_index.traditional | 27 |
| abstract_inverted_index.Furthermore, | 159 |
| abstract_inverted_index.construction | 182 |
| abstract_inverted_index.parallelism, | 99 |
| abstract_inverted_index.partitioning | 58, 89 |
| abstract_inverted_index.3d-tree-based | 129 |
| abstract_inverted_index.architectures | 81, 93 |
| abstract_inverted_index.computational | 50, 55, 152 |
| abstract_inverted_index.preprocessing | 5 |
| abstract_inverted_index.Location-based | 1 |
| abstract_inverted_index.cross-matching | 2, 74, 107, 121, 130, 193 |
| abstract_inverted_index.experimentally | 188 |
| abstract_inverted_index.pairwise-based | 106 |
| abstract_inverted_index.cross-matching. | 71 |
| abstract_inverted_index.multi-threading | 177 |
| abstract_inverted_index.high-performance | 80 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5006813535 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4210164952 |
| citation_normalized_percentile.value | 0.11169345 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |