3LegRace: Privacy-Preserving DNN Training over TEEs and GPUs Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.56553/popets-2022-0105
Leveraging parallel hardware (e.g. GPUs) for deep neural network (DNN) training brings high computing performance. However, it raises data privacy concerns as GPUs lack a trusted environment to protect the data. Trusted execution environments (TEEs) have emerged as a promising solution to achieve privacypreserving learning. Unfortunately, TEEs’ limited computing power renders them not comparable to GPUs in performance. To improve the trade-off among privacy, computing performance, and model accuracy, we propose an asymmetric model decomposition framework, AsymML, to (1) accelerate training using parallel hardware; and (2) achieve a strong privacy guarantee using TEEs and differential privacy (DP) with much less accuracy compromised compared to DP-only methods. By exploiting the low-rank characteristics in training data and intermediate features, AsymML asymmetrically decomposes inputs and intermediate activations into low-rank and residual parts. With the decomposed data, the target DNN model is accordingly split into a trusted and an untrusted part. The trusted part performs computations on low-rank data, with low compute and memory costs. The untrusted part is fed with residuals perturbed by very small noise. Privacy, computing performance, and model accuracy are well managed by respectively delegating the trusted and the untrusted part to TEEs and GPUs. We provide a formal DP guarantee that demonstrates that, for the same privacy guarantee, combining asymmetric data decomposition and DP requires much smaller noise compared to solely using DP without decomposition. This improves the privacy-utility trade-off significantly compared to using only DP methods without decomposition. Furthermore, we present a rank bound analysis showing that the low-rank structure is preserved after each layer across the entire model. Our extensive evaluations on DNN models show that AsymML delivers 7.6× speedup in training compared to the TEE-only executions while ensuring privacy. We also demonstrate that AsymML is effective in protecting data under common attacks such as model inversion and gradient attacks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.56553/popets-2022-0105
- OA Status
- hybrid
- Cited By
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293783501
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293783501Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.56553/popets-2022-0105Digital Object Identifier
- Title
-
3LegRace: Privacy-Preserving DNN Training over TEEs and GPUsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-31Full publication date if available
- Authors
-
Yue Niu, Ramy E. Ali, Salman AvestimehrList of authors in order
- Landing page
-
https://doi.org/10.56553/popets-2022-0105Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.56553/popets-2022-0105Direct OA link when available
- Concepts
-
Computer science, Differential privacy, Scheme (mathematics), Noise (video), Decomposition, Rank (graph theory), Information privacy, Trusted Network Connect, Computation, Distributed computing, Computer engineering, Parallel computing, Trusted Computing, Algorithm, Artificial intelligence, Computer security, Mathematical analysis, Mathematics, Image (mathematics), Ecology, Combinatorics, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 6, 2023: 4Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293783501 |
|---|---|
| doi | https://doi.org/10.56553/popets-2022-0105 |
| ids.doi | https://doi.org/10.56553/popets-2022-0105 |
| ids.openalex | https://openalex.org/W4293783501 |
| fwci | 2.15378702 |
| type | article |
| title | 3LegRace: Privacy-Preserving DNN Training over TEEs and GPUs |
| biblio.issue | 4 |
| biblio.volume | 2022 |
| biblio.last_page | 203 |
| biblio.first_page | 183 |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962999820709229 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11689 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.988099992275238 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Adversarial Robustness in Machine Learning |
| topics[2].id | https://openalex.org/T10237 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.982699990272522 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Cryptography and Data Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8377238512039185 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C23130292 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5536582469940186 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5275358 |
| concepts[1].display_name | Differential privacy |
| concepts[2].id | https://openalex.org/C77618280 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5234800577163696 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[2].display_name | Scheme (mathematics) |
| concepts[3].id | https://openalex.org/C99498987 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5228108167648315 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2210247 |
| concepts[3].display_name | Noise (video) |
| concepts[4].id | https://openalex.org/C124681953 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49592527747154236 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q339062 |
| concepts[4].display_name | Decomposition |
| concepts[5].id | https://openalex.org/C164226766 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45214754343032837 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[5].display_name | Rank (graph theory) |
| concepts[6].id | https://openalex.org/C123201435 |
| concepts[6].level | 2 |
| concepts[6].score | 0.441465824842453 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q456632 |
| concepts[6].display_name | Information privacy |
| concepts[7].id | https://openalex.org/C206149592 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4387635886669159 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3999882 |
| concepts[7].display_name | Trusted Network Connect |
| concepts[8].id | https://openalex.org/C45374587 |
| concepts[8].level | 2 |
| concepts[8].score | 0.41308748722076416 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[8].display_name | Computation |
| concepts[9].id | https://openalex.org/C120314980 |
| concepts[9].level | 1 |
| concepts[9].score | 0.34299972653388977 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[9].display_name | Distributed computing |
| concepts[10].id | https://openalex.org/C113775141 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34015077352523804 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q428691 |
| concepts[10].display_name | Computer engineering |
| concepts[11].id | https://openalex.org/C173608175 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32555025815963745 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[11].display_name | Parallel computing |
| concepts[12].id | https://openalex.org/C2776831232 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2900116443634033 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q966812 |
| concepts[12].display_name | Trusted Computing |
| concepts[13].id | https://openalex.org/C11413529 |
| concepts[13].level | 1 |
| concepts[13].score | 0.26205360889434814 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[13].display_name | Algorithm |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.26201874017715454 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.22837963700294495 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C33923547 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[17].display_name | Mathematics |
| concepts[18].id | https://openalex.org/C115961682 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[18].display_name | Image (mathematics) |
| concepts[19].id | https://openalex.org/C18903297 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[19].display_name | Ecology |
| concepts[20].id | https://openalex.org/C114614502 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[20].display_name | Combinatorics |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8377238512039185 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/differential-privacy |
| keywords[1].score | 0.5536582469940186 |
| keywords[1].display_name | Differential privacy |
| keywords[2].id | https://openalex.org/keywords/scheme |
| keywords[2].score | 0.5234800577163696 |
| keywords[2].display_name | Scheme (mathematics) |
| keywords[3].id | https://openalex.org/keywords/noise |
| keywords[3].score | 0.5228108167648315 |
| keywords[3].display_name | Noise (video) |
| keywords[4].id | https://openalex.org/keywords/decomposition |
| keywords[4].score | 0.49592527747154236 |
| keywords[4].display_name | Decomposition |
| keywords[5].id | https://openalex.org/keywords/rank |
| keywords[5].score | 0.45214754343032837 |
| keywords[5].display_name | Rank (graph theory) |
| keywords[6].id | https://openalex.org/keywords/information-privacy |
| keywords[6].score | 0.441465824842453 |
| keywords[6].display_name | Information privacy |
| keywords[7].id | https://openalex.org/keywords/trusted-network-connect |
| keywords[7].score | 0.4387635886669159 |
| keywords[7].display_name | Trusted Network Connect |
| keywords[8].id | https://openalex.org/keywords/computation |
| keywords[8].score | 0.41308748722076416 |
| keywords[8].display_name | Computation |
| keywords[9].id | https://openalex.org/keywords/distributed-computing |
| keywords[9].score | 0.34299972653388977 |
| keywords[9].display_name | Distributed computing |
| keywords[10].id | https://openalex.org/keywords/computer-engineering |
| keywords[10].score | 0.34015077352523804 |
| keywords[10].display_name | Computer engineering |
| keywords[11].id | https://openalex.org/keywords/parallel-computing |
| keywords[11].score | 0.32555025815963745 |
| keywords[11].display_name | Parallel computing |
| keywords[12].id | https://openalex.org/keywords/trusted-computing |
| keywords[12].score | 0.2900116443634033 |
| keywords[12].display_name | Trusted Computing |
| keywords[13].id | https://openalex.org/keywords/algorithm |
| keywords[13].score | 0.26205360889434814 |
| keywords[13].display_name | Algorithm |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.26201874017715454 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/computer-security |
| keywords[15].score | 0.22837963700294495 |
| keywords[15].display_name | Computer security |
| language | en |
| locations[0].id | doi:10.56553/popets-2022-0105 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210183172 |
| locations[0].source.issn | 2299-0984 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2299-0984 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings on Privacy Enhancing Technologies |
| locations[0].source.host_organization | https://openalex.org/P4310320322 |
| locations[0].source.host_organization_name | De Gruyter Open |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| locations[0].source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings on Privacy Enhancing Technologies |
| locations[0].landing_page_url | https://doi.org/10.56553/popets-2022-0105 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101472380 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1663-2921 |
| authorships[0].author.display_name | Yue Niu |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[0].affiliations[0].raw_affiliation_string | Electrical and Computer Engineering Department, University of Southern California |
| authorships[0].institutions[0].id | https://openalex.org/I1174212 |
| authorships[0].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Southern California |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yue Niu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Electrical and Computer Engineering Department, University of Southern California |
| authorships[1].author.id | https://openalex.org/A5102741453 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6273-1998 |
| authorships[1].author.display_name | Ramy E. Ali |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[1].affiliations[0].raw_affiliation_string | Electrical and Computer Engineering Department, University of Southern California, reali |
| authorships[1].institutions[0].id | https://openalex.org/I1174212 |
| authorships[1].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Southern California |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ramy E. Ali |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Electrical and Computer Engineering Department, University of Southern California, reali |
| authorships[2].author.id | https://openalex.org/A5112726818 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Salman Avestimehr |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[2].affiliations[0].raw_affiliation_string | Electrical and Computer Engineering Department, University of Southern California, reali |
| authorships[2].institutions[0].id | https://openalex.org/I1174212 |
| authorships[2].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Southern California |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Salman Avestimehr |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Electrical and Computer Engineering Department, University of Southern California, reali |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.56553/popets-2022-0105 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | 3LegRace: Privacy-Preserving DNN Training over TEEs and GPUs |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962999820709229 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W3038283795, https://openalex.org/W2604501336, https://openalex.org/W2734500670, https://openalex.org/W2558166297, https://openalex.org/W2315671126, https://openalex.org/W798507144, https://openalex.org/W2964481303, https://openalex.org/W2571704763, https://openalex.org/W1751413323, https://openalex.org/W3206394311 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 6 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.56553/popets-2022-0105 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210183172 |
| best_oa_location.source.issn | 2299-0984 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2299-0984 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings on Privacy Enhancing Technologies |
| best_oa_location.source.host_organization | https://openalex.org/P4310320322 |
| best_oa_location.source.host_organization_name | De Gruyter Open |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| best_oa_location.source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings on Privacy Enhancing Technologies |
| best_oa_location.landing_page_url | https://doi.org/10.56553/popets-2022-0105 |
| primary_location.id | doi:10.56553/popets-2022-0105 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210183172 |
| primary_location.source.issn | 2299-0984 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2299-0984 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings on Privacy Enhancing Technologies |
| primary_location.source.host_organization | https://openalex.org/P4310320322 |
| primary_location.source.host_organization_name | De Gruyter Open |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320322, https://openalex.org/P4310313990 |
| primary_location.source.host_organization_lineage_names | De Gruyter Open, De Gruyter |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings on Privacy Enhancing Technologies |
| primary_location.landing_page_url | https://doi.org/10.56553/popets-2022-0105 |
| publication_date | 2022-08-31 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 24, 38, 87, 141, 197, 243 |
| abstract_inverted_index.By | 106 |
| abstract_inverted_index.DP | 199, 214, 223, 236 |
| abstract_inverted_index.To | 58 |
| abstract_inverted_index.We | 195, 283 |
| abstract_inverted_index.an | 71, 144 |
| abstract_inverted_index.as | 21, 37, 297 |
| abstract_inverted_index.by | 169, 182 |
| abstract_inverted_index.in | 56, 111, 273, 290 |
| abstract_inverted_index.is | 137, 164, 252, 288 |
| abstract_inverted_index.it | 16 |
| abstract_inverted_index.on | 152, 264 |
| abstract_inverted_index.to | 27, 41, 54, 77, 103, 191, 220, 233, 276 |
| abstract_inverted_index.we | 69, 241 |
| abstract_inverted_index.(1) | 78 |
| abstract_inverted_index.(2) | 85 |
| abstract_inverted_index.DNN | 135, 265 |
| abstract_inverted_index.Our | 261 |
| abstract_inverted_index.The | 147, 161 |
| abstract_inverted_index.and | 66, 84, 93, 114, 121, 126, 143, 158, 176, 187, 193, 213, 300 |
| abstract_inverted_index.are | 179 |
| abstract_inverted_index.fed | 165 |
| abstract_inverted_index.for | 5, 204 |
| abstract_inverted_index.low | 156 |
| abstract_inverted_index.not | 52 |
| abstract_inverted_index.the | 29, 60, 108, 130, 133, 185, 188, 205, 228, 249, 258, 277 |
| abstract_inverted_index.(DP) | 96 |
| abstract_inverted_index.GPUs | 22, 55 |
| abstract_inverted_index.TEEs | 92, 192 |
| abstract_inverted_index.This | 226 |
| abstract_inverted_index.With | 129 |
| abstract_inverted_index.also | 284 |
| abstract_inverted_index.data | 18, 113, 211, 292 |
| abstract_inverted_index.deep | 6 |
| abstract_inverted_index.each | 255 |
| abstract_inverted_index.have | 35 |
| abstract_inverted_index.high | 12 |
| abstract_inverted_index.into | 124, 140 |
| abstract_inverted_index.lack | 23 |
| abstract_inverted_index.less | 99 |
| abstract_inverted_index.much | 98, 216 |
| abstract_inverted_index.only | 235 |
| abstract_inverted_index.part | 149, 163, 190 |
| abstract_inverted_index.rank | 244 |
| abstract_inverted_index.same | 206 |
| abstract_inverted_index.show | 267 |
| abstract_inverted_index.such | 296 |
| abstract_inverted_index.that | 201, 248, 268, 286 |
| abstract_inverted_index.them | 51 |
| abstract_inverted_index.very | 170 |
| abstract_inverted_index.well | 180 |
| abstract_inverted_index.with | 97, 155, 166 |
| abstract_inverted_index.(DNN) | 9 |
| abstract_inverted_index.(e.g. | 3 |
| abstract_inverted_index.7.6× | 271 |
| abstract_inverted_index.GPUs) | 4 |
| abstract_inverted_index.GPUs. | 194 |
| abstract_inverted_index.after | 254 |
| abstract_inverted_index.among | 62 |
| abstract_inverted_index.bound | 245 |
| abstract_inverted_index.data, | 132, 154 |
| abstract_inverted_index.data. | 30 |
| abstract_inverted_index.layer | 256 |
| abstract_inverted_index.model | 67, 73, 136, 177, 298 |
| abstract_inverted_index.noise | 218 |
| abstract_inverted_index.part. | 146 |
| abstract_inverted_index.power | 49 |
| abstract_inverted_index.small | 171 |
| abstract_inverted_index.split | 139 |
| abstract_inverted_index.that, | 203 |
| abstract_inverted_index.under | 293 |
| abstract_inverted_index.using | 81, 91, 222, 234 |
| abstract_inverted_index.while | 280 |
| abstract_inverted_index.(TEEs) | 34 |
| abstract_inverted_index.AsymML | 117, 269, 287 |
| abstract_inverted_index.across | 257 |
| abstract_inverted_index.brings | 11 |
| abstract_inverted_index.common | 294 |
| abstract_inverted_index.costs. | 160 |
| abstract_inverted_index.entire | 259 |
| abstract_inverted_index.formal | 198 |
| abstract_inverted_index.inputs | 120 |
| abstract_inverted_index.memory | 159 |
| abstract_inverted_index.model. | 260 |
| abstract_inverted_index.models | 266 |
| abstract_inverted_index.neural | 7 |
| abstract_inverted_index.noise. | 172 |
| abstract_inverted_index.parts. | 128 |
| abstract_inverted_index.raises | 17 |
| abstract_inverted_index.solely | 221 |
| abstract_inverted_index.strong | 88 |
| abstract_inverted_index.target | 134 |
| abstract_inverted_index.AsymML, | 76 |
| abstract_inverted_index.DP-only | 104 |
| abstract_inverted_index.TEEs’ | 46 |
| abstract_inverted_index.Trusted | 31 |
| abstract_inverted_index.achieve | 42, 86 |
| abstract_inverted_index.attacks | 295 |
| abstract_inverted_index.compute | 157 |
| abstract_inverted_index.emerged | 36 |
| abstract_inverted_index.improve | 59 |
| abstract_inverted_index.limited | 47 |
| abstract_inverted_index.managed | 181 |
| abstract_inverted_index.methods | 237 |
| abstract_inverted_index.network | 8 |
| abstract_inverted_index.present | 242 |
| abstract_inverted_index.privacy | 19, 89, 95, 207 |
| abstract_inverted_index.propose | 70 |
| abstract_inverted_index.protect | 28 |
| abstract_inverted_index.provide | 196 |
| abstract_inverted_index.renders | 50 |
| abstract_inverted_index.showing | 247 |
| abstract_inverted_index.smaller | 217 |
| abstract_inverted_index.speedup | 272 |
| abstract_inverted_index.trusted | 25, 142, 148, 186 |
| abstract_inverted_index.without | 224, 238 |
| abstract_inverted_index.However, | 15 |
| abstract_inverted_index.Privacy, | 173 |
| abstract_inverted_index.TEE-only | 278 |
| abstract_inverted_index.accuracy | 100, 178 |
| abstract_inverted_index.analysis | 246 |
| abstract_inverted_index.attacks. | 302 |
| abstract_inverted_index.compared | 102, 219, 232, 275 |
| abstract_inverted_index.concerns | 20 |
| abstract_inverted_index.delivers | 270 |
| abstract_inverted_index.ensuring | 281 |
| abstract_inverted_index.gradient | 301 |
| abstract_inverted_index.hardware | 2 |
| abstract_inverted_index.improves | 227 |
| abstract_inverted_index.low-rank | 109, 125, 153, 250 |
| abstract_inverted_index.methods. | 105 |
| abstract_inverted_index.parallel | 1, 82 |
| abstract_inverted_index.performs | 150 |
| abstract_inverted_index.privacy, | 63 |
| abstract_inverted_index.privacy. | 282 |
| abstract_inverted_index.requires | 215 |
| abstract_inverted_index.residual | 127 |
| abstract_inverted_index.solution | 40 |
| abstract_inverted_index.training | 10, 80, 112, 274 |
| abstract_inverted_index.accuracy, | 68 |
| abstract_inverted_index.combining | 209 |
| abstract_inverted_index.computing | 13, 48, 64, 174 |
| abstract_inverted_index.effective | 289 |
| abstract_inverted_index.execution | 32 |
| abstract_inverted_index.extensive | 262 |
| abstract_inverted_index.features, | 116 |
| abstract_inverted_index.guarantee | 90, 200 |
| abstract_inverted_index.hardware; | 83 |
| abstract_inverted_index.inversion | 299 |
| abstract_inverted_index.learning. | 44 |
| abstract_inverted_index.perturbed | 168 |
| abstract_inverted_index.preserved | 253 |
| abstract_inverted_index.promising | 39 |
| abstract_inverted_index.residuals | 167 |
| abstract_inverted_index.structure | 251 |
| abstract_inverted_index.trade-off | 61, 230 |
| abstract_inverted_index.untrusted | 145, 162, 189 |
| abstract_inverted_index.Leveraging | 0 |
| abstract_inverted_index.accelerate | 79 |
| abstract_inverted_index.asymmetric | 72, 210 |
| abstract_inverted_index.comparable | 53 |
| abstract_inverted_index.decomposed | 131 |
| abstract_inverted_index.decomposes | 119 |
| abstract_inverted_index.delegating | 184 |
| abstract_inverted_index.executions | 279 |
| abstract_inverted_index.exploiting | 107 |
| abstract_inverted_index.framework, | 75 |
| abstract_inverted_index.guarantee, | 208 |
| abstract_inverted_index.protecting | 291 |
| abstract_inverted_index.accordingly | 138 |
| abstract_inverted_index.activations | 123 |
| abstract_inverted_index.compromised | 101 |
| abstract_inverted_index.demonstrate | 285 |
| abstract_inverted_index.environment | 26 |
| abstract_inverted_index.evaluations | 263 |
| abstract_inverted_index.Furthermore, | 240 |
| abstract_inverted_index.computations | 151 |
| abstract_inverted_index.demonstrates | 202 |
| abstract_inverted_index.differential | 94 |
| abstract_inverted_index.environments | 33 |
| abstract_inverted_index.intermediate | 115, 122 |
| abstract_inverted_index.performance, | 65, 175 |
| abstract_inverted_index.performance. | 14, 57 |
| abstract_inverted_index.respectively | 183 |
| abstract_inverted_index.decomposition | 74, 212 |
| abstract_inverted_index.significantly | 231 |
| abstract_inverted_index.Unfortunately, | 45 |
| abstract_inverted_index.asymmetrically | 118 |
| abstract_inverted_index.decomposition. | 225, 239 |
| abstract_inverted_index.characteristics | 110 |
| abstract_inverted_index.privacy-utility | 229 |
| abstract_inverted_index.privacypreserving | 43 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.85981323 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |