3x2: 3D Object Part Segmentation by 2D Semantic Correspondences Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2407.09648
3D object part segmentation is essential in computer vision applications. While substantial progress has been made in 2D object part segmentation, the 3D counterpart has received less attention, in part due to the scarcity of annotated 3D datasets, which are expensive to collect. In this work, we propose to leverage a few annotated 3D shapes or richly annotated 2D datasets to perform 3D object part segmentation. We present our novel approach, termed 3-By-2 that achieves SOTA performance on different benchmarks with various granularity levels. By using features from pretrained foundation models and exploiting semantic and geometric correspondences, we are able to overcome the challenges of limited 3D annotations. Our approach leverages available 2D labels, enabling effective 3D object part segmentation. Our method 3-By-2 can accommodate various part taxonomies and granularities, demonstrating interesting part label transfer ability across different object categories. Project website: \url{https://ngailapdi.github.io/projects/3by2/}.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2407.09648
- https://arxiv.org/pdf/2407.09648
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400702722
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400702722Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2407.09648Digital Object Identifier
- Title
-
3x2: 3D Object Part Segmentation by 2D Semantic CorrespondencesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-12Full publication date if available
- Authors
-
Anh Thai, Wei‐Yao Wang, Hao Tang, Stefan Stojanov, Matt Feiszli, James M. RehgList of authors in order
- Landing page
-
https://arxiv.org/abs/2407.09648Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2407.09648Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2407.09648Direct OA link when available
- Concepts
-
Segmentation, Artificial intelligence, Object (grammar), Computer vision, Computer science, Natural language processingTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400702722 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2407.09648 |
| ids.doi | https://doi.org/10.48550/arxiv.2407.09648 |
| ids.openalex | https://openalex.org/W4400702722 |
| fwci | |
| type | preprint |
| title | 3x2: 3D Object Part Segmentation by 2D Semantic Correspondences |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9962000250816345 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T14339 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9939000010490417 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Processing and 3D Reconstruction |
| topics[2].id | https://openalex.org/T12111 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9926000237464905 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7023360729217529 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6804351806640625 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2781238097 |
| concepts[2].level | 2 |
| concepts[2].score | 0.640470027923584 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[2].display_name | Object (grammar) |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5788218379020691 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5678207874298096 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4258444607257843 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7023360729217529 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6804351806640625 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/object |
| keywords[2].score | 0.640470027923584 |
| keywords[2].display_name | Object (grammar) |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.5788218379020691 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5678207874298096 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.4258444607257843 |
| keywords[5].display_name | Natural language processing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2407.09648 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2407.09648 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2407.09648 |
| locations[1].id | doi:10.48550/arxiv.2407.09648 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2407.09648 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5024590923 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8134-5494 |
| authorships[0].author.display_name | Anh Thai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Thai, Anh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5031992776 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6551-1720 |
| authorships[1].author.display_name | Wei‐Yao Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Weiyao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5101745105 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6197-0874 |
| authorships[2].author.display_name | Hao Tang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Tang, Hao |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021585499 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Stefan Stojanov |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Stojanov, Stefan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055620900 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Matt Feiszli |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Feiszli, Matt |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5002228469 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1793-5462 |
| authorships[5].author.display_name | James M. Rehg |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rehg, James M. |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2407.09648 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | 3x2: 3D Object Part Segmentation by 2D Semantic Correspondences |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9962000250816345 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2407.09648 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2407.09648 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2407.09648 |
| primary_location.id | pmh:oai:arXiv.org:2407.09648 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2407.09648 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2407.09648 |
| publication_date | 2024-07-12 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 50 |
| abstract_inverted_index.2D | 17, 58, 112 |
| abstract_inverted_index.3D | 0, 22, 36, 53, 62, 106, 116 |
| abstract_inverted_index.By | 84 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.We | 66 |
| abstract_inverted_index.in | 6, 16, 28 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 34, 104 |
| abstract_inverted_index.on | 77 |
| abstract_inverted_index.or | 55 |
| abstract_inverted_index.to | 31, 41, 48, 60, 100 |
| abstract_inverted_index.we | 46, 97 |
| abstract_inverted_index.Our | 108, 120 |
| abstract_inverted_index.and | 91, 94, 128 |
| abstract_inverted_index.are | 39, 98 |
| abstract_inverted_index.can | 123 |
| abstract_inverted_index.due | 30 |
| abstract_inverted_index.few | 51 |
| abstract_inverted_index.has | 13, 24 |
| abstract_inverted_index.our | 68 |
| abstract_inverted_index.the | 21, 32, 102 |
| abstract_inverted_index.SOTA | 75 |
| abstract_inverted_index.able | 99 |
| abstract_inverted_index.been | 14 |
| abstract_inverted_index.from | 87 |
| abstract_inverted_index.less | 26 |
| abstract_inverted_index.made | 15 |
| abstract_inverted_index.part | 2, 19, 29, 64, 118, 126, 132 |
| abstract_inverted_index.that | 73 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.with | 80 |
| abstract_inverted_index.While | 10 |
| abstract_inverted_index.label | 133 |
| abstract_inverted_index.novel | 69 |
| abstract_inverted_index.using | 85 |
| abstract_inverted_index.which | 38 |
| abstract_inverted_index.work, | 45 |
| abstract_inverted_index.3-By-2 | 72, 122 |
| abstract_inverted_index.across | 136 |
| abstract_inverted_index.method | 121 |
| abstract_inverted_index.models | 90 |
| abstract_inverted_index.object | 1, 18, 63, 117, 138 |
| abstract_inverted_index.richly | 56 |
| abstract_inverted_index.shapes | 54 |
| abstract_inverted_index.termed | 71 |
| abstract_inverted_index.vision | 8 |
| abstract_inverted_index.Project | 140 |
| abstract_inverted_index.ability | 135 |
| abstract_inverted_index.labels, | 113 |
| abstract_inverted_index.levels. | 83 |
| abstract_inverted_index.limited | 105 |
| abstract_inverted_index.perform | 61 |
| abstract_inverted_index.present | 67 |
| abstract_inverted_index.propose | 47 |
| abstract_inverted_index.various | 81, 125 |
| abstract_inverted_index.achieves | 74 |
| abstract_inverted_index.approach | 109 |
| abstract_inverted_index.collect. | 42 |
| abstract_inverted_index.computer | 7 |
| abstract_inverted_index.datasets | 59 |
| abstract_inverted_index.enabling | 114 |
| abstract_inverted_index.features | 86 |
| abstract_inverted_index.leverage | 49 |
| abstract_inverted_index.overcome | 101 |
| abstract_inverted_index.progress | 12 |
| abstract_inverted_index.received | 25 |
| abstract_inverted_index.scarcity | 33 |
| abstract_inverted_index.semantic | 93 |
| abstract_inverted_index.transfer | 134 |
| abstract_inverted_index.website: | 141 |
| abstract_inverted_index.annotated | 35, 52, 57 |
| abstract_inverted_index.approach, | 70 |
| abstract_inverted_index.available | 111 |
| abstract_inverted_index.datasets, | 37 |
| abstract_inverted_index.different | 78, 137 |
| abstract_inverted_index.effective | 115 |
| abstract_inverted_index.essential | 5 |
| abstract_inverted_index.expensive | 40 |
| abstract_inverted_index.geometric | 95 |
| abstract_inverted_index.leverages | 110 |
| abstract_inverted_index.attention, | 27 |
| abstract_inverted_index.benchmarks | 79 |
| abstract_inverted_index.challenges | 103 |
| abstract_inverted_index.exploiting | 92 |
| abstract_inverted_index.foundation | 89 |
| abstract_inverted_index.pretrained | 88 |
| abstract_inverted_index.taxonomies | 127 |
| abstract_inverted_index.accommodate | 124 |
| abstract_inverted_index.categories. | 139 |
| abstract_inverted_index.counterpart | 23 |
| abstract_inverted_index.granularity | 82 |
| abstract_inverted_index.interesting | 131 |
| abstract_inverted_index.performance | 76 |
| abstract_inverted_index.substantial | 11 |
| abstract_inverted_index.annotations. | 107 |
| abstract_inverted_index.segmentation | 3 |
| abstract_inverted_index.applications. | 9 |
| abstract_inverted_index.demonstrating | 130 |
| abstract_inverted_index.segmentation, | 20 |
| abstract_inverted_index.segmentation. | 65, 119 |
| abstract_inverted_index.granularities, | 129 |
| abstract_inverted_index.correspondences, | 96 |
| abstract_inverted_index.\url{https://ngailapdi.github.io/projects/3by2/}. | 142 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |