5 Lattices and their Voronoï and Delone cells Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1051/978-2-7598-1952-2.c006
Lattices and their Voronoï and Delone cellsIn this section we study lattices from the point of view of their tilings by polytopes. Tilings by polytopes: some basic conceptsDefinition: polytope A polytope P is a compact body with a nonempty interior whose boundary ∂P is the union of a finite number of facets, where each facet is the (n -1)-dimensional intersection of P with a hyperplane.Two-dimensional polytopes are called polygons; three-dimensional polytopes are called polyhedra.Definition: k-face (of a polytope) For k = 0, . . ., n-2, a k-dimensional face (or k-face, for short) of a polytope is an intersection of at least (nk) facets that is not contained in the interior of a j-face for any j > k.Thus a 0-face of a polytope is a point that lies in the intersection of at least n facets but not in the interior of any 1-face, 2-face, etc.As a customary, we use the terms vertex and edge, respectively for the 0-dimensional and 1-dimensional faces of tiles, and facets for faces of dimension n -1.In the tilings we will study, the tiles will be convex polytopes in E n .Remember that the polytope P is convex if P contains the line segments joining any two points in P or on its boundary.Definition: tiling A tiling T of E n is a partition of E n into a countable number of closed cells with non-overlapping interiors:(5.1)The words tiling and tessellation are used interchangeably; similarly, tiles are often called cells.Definition: prototile set A prototile set P for a tiling T is a set of polytopes such that every tile of T is an isometric copy of an element of P.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.1051/978-2-7598-1952-2.c006
- https://www.degruyter.com/document/doi/10.1051/978-2-7598-1952-2.c006/pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4230977872
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4230977872Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1051/978-2-7598-1952-2.c006Digital Object Identifier
- Title
-
5 Lattices and their Voronoï and Delone cellsWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-04Full publication date if available
- Authors
-
Boris Zhilinskii, Michel Leduc, Michel Le BellacList of authors in order
- Landing page
-
https://doi.org/10.1051/978-2-7598-1952-2.c006Publisher landing page
- PDF URL
-
https://www.degruyter.com/document/doi/10.1051/978-2-7598-1952-2.c006/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.degruyter.com/document/doi/10.1051/978-2-7598-1952-2.c006/pdfDirect OA link when available
- Concepts
-
Computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4230977872 |
|---|---|
| doi | https://doi.org/10.1051/978-2-7598-1952-2.c006 |
| ids.doi | https://doi.org/10.1051/978-2-7598-1952-2.c006 |
| ids.openalex | https://openalex.org/W4230977872 |
| fwci | 0.0 |
| type | book-chapter |
| title | 5 Lattices and their Voronoï and Delone cells |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 100 |
| biblio.first_page | 81 |
| topics[0].id | https://openalex.org/T11727 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.5511000156402588 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Algebra and Logic |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.3092689514160156 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.3092689514160156 |
| keywords[0].display_name | Computer science |
| language | en |
| locations[0].id | doi:10.1051/978-2-7598-1952-2.c006 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.degruyter.com/document/doi/10.1051/978-2-7598-1952-2.c006/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Introduction to Louis Michel's lattice geometry through group action |
| locations[0].landing_page_url | https://doi.org/10.1051/978-2-7598-1952-2.c006 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100069741 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Boris Zhilinskii |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Boris Zhilinskii |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5104862777 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Michel Leduc |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Michel Leduc |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5044852733 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Michel Le Bellac |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Michel Le Bellac |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.degruyter.com/document/doi/10.1051/978-2-7598-1952-2.c006/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-11T00:00:00 |
| display_name | 5 Lattices and their Voronoï and Delone cells |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11727 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.5511000156402588 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Algebra and Logic |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W2382290278, https://openalex.org/W2350741829, https://openalex.org/W2530322880, https://openalex.org/W1596801655, https://openalex.org/W2359140296 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1051/978-2-7598-1952-2.c006 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.degruyter.com/document/doi/10.1051/978-2-7598-1952-2.c006/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Introduction to Louis Michel's lattice geometry through group action |
| best_oa_location.landing_page_url | https://doi.org/10.1051/978-2-7598-1952-2.c006 |
| primary_location.id | doi:10.1051/978-2-7598-1952-2.c006 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.degruyter.com/document/doi/10.1051/978-2-7598-1952-2.c006/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Introduction to Louis Michel's lattice geometry through group action |
| primary_location.landing_page_url | https://doi.org/10.1051/978-2-7598-1952-2.c006 |
| publication_date | 2020-11-04 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.. | 82, 83 |
| abstract_inverted_index.= | 80 |
| abstract_inverted_index.> | 117 |
| abstract_inverted_index.A | 29, 211, 248 |
| abstract_inverted_index.E | 185, 215, 221 |
| abstract_inverted_index.P | 31, 61, 191, 195, 205, 251 |
| abstract_inverted_index.T | 213, 255, 266 |
| abstract_inverted_index.a | 33, 37, 47, 63, 76, 86, 94, 112, 119, 122, 125, 147, 218, 224, 253, 257 |
| abstract_inverted_index.j | 116 |
| abstract_inverted_index.k | 79 |
| abstract_inverted_index.n | 135, 171, 186, 216, 222 |
| abstract_inverted_index.(n | 57 |
| abstract_inverted_index.., | 84 |
| abstract_inverted_index.0, | 81 |
| abstract_inverted_index.P. | 275 |
| abstract_inverted_index.an | 97, 268, 272 |
| abstract_inverted_index.at | 100, 133 |
| abstract_inverted_index.be | 181 |
| abstract_inverted_index.by | 20, 23 |
| abstract_inverted_index.if | 194 |
| abstract_inverted_index.in | 108, 129, 139, 184, 204 |
| abstract_inverted_index.is | 32, 43, 55, 96, 105, 124, 192, 217, 256, 267 |
| abstract_inverted_index.of | 15, 17, 46, 50, 60, 93, 99, 111, 121, 132, 142, 163, 169, 214, 220, 227, 259, 265, 271, 274 |
| abstract_inverted_index.on | 207 |
| abstract_inverted_index.or | 206 |
| abstract_inverted_index.we | 9, 149, 175 |
| abstract_inverted_index.(of | 75 |
| abstract_inverted_index.(or | 89 |
| abstract_inverted_index.For | 78 |
| abstract_inverted_index.and | 1, 4, 154, 160, 165, 235 |
| abstract_inverted_index.any | 115, 143, 201 |
| abstract_inverted_index.are | 66, 71, 237, 242 |
| abstract_inverted_index.but | 137 |
| abstract_inverted_index.for | 91, 114, 157, 167, 252 |
| abstract_inverted_index.its | 208 |
| abstract_inverted_index.not | 106, 138 |
| abstract_inverted_index.set | 247, 250, 258 |
| abstract_inverted_index.the | 13, 44, 56, 109, 130, 140, 151, 158, 173, 178, 189, 197 |
| abstract_inverted_index.two | 202 |
| abstract_inverted_index.use | 150 |
| abstract_inverted_index.(nk) | 102 |
| abstract_inverted_index.body | 35 |
| abstract_inverted_index.copy | 270 |
| abstract_inverted_index.each | 53 |
| abstract_inverted_index.face | 88 |
| abstract_inverted_index.from | 12 |
| abstract_inverted_index.into | 223 |
| abstract_inverted_index.lies | 128 |
| abstract_inverted_index.line | 198 |
| abstract_inverted_index.n-2, | 85 |
| abstract_inverted_index.some | 25 |
| abstract_inverted_index.such | 261 |
| abstract_inverted_index.that | 104, 127, 188, 262 |
| abstract_inverted_index.this | 7 |
| abstract_inverted_index.tile | 264 |
| abstract_inverted_index.used | 238 |
| abstract_inverted_index.view | 16 |
| abstract_inverted_index.will | 176, 180 |
| abstract_inverted_index.with | 36, 62, 230 |
| abstract_inverted_index.∂P | 42 |
| abstract_inverted_index.-1.In | 172 |
| abstract_inverted_index.basic | 26 |
| abstract_inverted_index.cells | 229 |
| abstract_inverted_index.edge, | 155 |
| abstract_inverted_index.every | 263 |
| abstract_inverted_index.faces | 162, 168 |
| abstract_inverted_index.facet | 54 |
| abstract_inverted_index.least | 101, 134 |
| abstract_inverted_index.often | 243 |
| abstract_inverted_index.point | 14, 126 |
| abstract_inverted_index.study | 10 |
| abstract_inverted_index.terms | 152 |
| abstract_inverted_index.their | 2, 18 |
| abstract_inverted_index.tiles | 179, 241 |
| abstract_inverted_index.union | 45 |
| abstract_inverted_index.where | 52 |
| abstract_inverted_index.whose | 40 |
| abstract_inverted_index.words | 233 |
| abstract_inverted_index.0-face | 120 |
| abstract_inverted_index.Delone | 5 |
| abstract_inverted_index.called | 67, 72, 244 |
| abstract_inverted_index.closed | 228 |
| abstract_inverted_index.convex | 182, 193 |
| abstract_inverted_index.etc.As | 146 |
| abstract_inverted_index.facets | 103, 136, 166 |
| abstract_inverted_index.finite | 48 |
| abstract_inverted_index.j-face | 113 |
| abstract_inverted_index.k-face | 74 |
| abstract_inverted_index.k.Thus | 118 |
| abstract_inverted_index.number | 49, 226 |
| abstract_inverted_index.points | 203 |
| abstract_inverted_index.short) | 92 |
| abstract_inverted_index.study, | 177 |
| abstract_inverted_index.tiles, | 164 |
| abstract_inverted_index.tiling | 210, 212, 234, 254 |
| abstract_inverted_index.vertex | 153 |
| abstract_inverted_index.1-face, | 144 |
| abstract_inverted_index.2-face, | 145 |
| abstract_inverted_index.Tilings | 22 |
| abstract_inverted_index.cellsIn | 6 |
| abstract_inverted_index.compact | 34 |
| abstract_inverted_index.element | 273 |
| abstract_inverted_index.facets, | 51 |
| abstract_inverted_index.joining | 200 |
| abstract_inverted_index.k-face, | 90 |
| abstract_inverted_index.section | 8 |
| abstract_inverted_index.tilings | 19, 174 |
| abstract_inverted_index.Lattices | 0 |
| abstract_inverted_index.Voronoï | 3 |
| abstract_inverted_index.boundary | 41 |
| abstract_inverted_index.contains | 196 |
| abstract_inverted_index.interior | 39, 110, 141 |
| abstract_inverted_index.lattices | 11 |
| abstract_inverted_index.nonempty | 38 |
| abstract_inverted_index.polytope | 28, 30, 95, 123, 190 |
| abstract_inverted_index.segments | 199 |
| abstract_inverted_index..Remember | 187 |
| abstract_inverted_index.contained | 107 |
| abstract_inverted_index.countable | 225 |
| abstract_inverted_index.dimension | 170 |
| abstract_inverted_index.isometric | 269 |
| abstract_inverted_index.partition | 219 |
| abstract_inverted_index.polygons; | 68 |
| abstract_inverted_index.polytope) | 77 |
| abstract_inverted_index.polytopes | 65, 70, 183, 260 |
| abstract_inverted_index.prototile | 246, 249 |
| abstract_inverted_index.customary, | 148 |
| abstract_inverted_index.polytopes. | 21 |
| abstract_inverted_index.polytopes: | 24 |
| abstract_inverted_index.similarly, | 240 |
| abstract_inverted_index.intersection | 59, 98, 131 |
| abstract_inverted_index.respectively | 156 |
| abstract_inverted_index.tessellation | 236 |
| abstract_inverted_index.0-dimensional | 159 |
| abstract_inverted_index.1-dimensional | 161 |
| abstract_inverted_index.k-dimensional | 87 |
| abstract_inverted_index.-1)-dimensional | 58 |
| abstract_inverted_index.non-overlapping | 231 |
| abstract_inverted_index.interchangeably; | 239 |
| abstract_inverted_index.cells.Definition: | 245 |
| abstract_inverted_index.three-dimensional | 69 |
| abstract_inverted_index.interiors:(5.1)The | 232 |
| abstract_inverted_index.conceptsDefinition: | 27 |
| abstract_inverted_index.boundary.Definition: | 209 |
| abstract_inverted_index.polyhedra.Definition: | 73 |
| abstract_inverted_index.hyperplane.Two-dimensional | 64 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.37005087 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |