A Bayesian conformity and risk assessment adapted to a form error model Article Swipe
Yacine Koucha
,
Alistair Forbes
,
Qingping Yang
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1016/j.measen.2021.100330
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1016/j.measen.2021.100330
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.measen.2021.100330
- OA Status
- gold
- Cited By
- 4
- References
- 9
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3203959976
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3203959976Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.measen.2021.100330Digital Object Identifier
- Title
-
A Bayesian conformity and risk assessment adapted to a form error modelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-22Full publication date if available
- Authors
-
Yacine Koucha, Alistair Forbes, Qingping YangList of authors in order
- Landing page
-
https://doi.org/10.1016/j.measen.2021.100330Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.measen.2021.100330Direct OA link when available
- Concepts
-
Conformity, Bayesian probability, Econometrics, Psychology, Computer science, Statistics, Mathematics, Social psychologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
9Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3203959976 |
|---|---|
| doi | https://doi.org/10.1016/j.measen.2021.100330 |
| ids.doi | https://doi.org/10.1016/j.measen.2021.100330 |
| ids.mag | 3203959976 |
| ids.openalex | https://openalex.org/W3203959976 |
| fwci | 0.30665844 |
| type | article |
| title | A Bayesian conformity and risk assessment adapted to a form error model |
| biblio.issue | |
| biblio.volume | 18 |
| biblio.last_page | 100330 |
| biblio.first_page | 100330 |
| topics[0].id | https://openalex.org/T12549 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9865000247955322 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Image and Object Detection Techniques |
| topics[1].id | https://openalex.org/T10928 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.984499990940094 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1804 |
| topics[1].subfield.display_name | Statistics, Probability and Uncertainty |
| topics[1].display_name | Probabilistic and Robust Engineering Design |
| topics[2].id | https://openalex.org/T11606 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9750000238418579 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Infrastructure Maintenance and Monitoring |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | USD |
| apc_list.value_usd | 1800 |
| apc_paid.value | 1800 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1800 |
| concepts[0].id | https://openalex.org/C142172996 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8013996481895447 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q221284 |
| concepts[0].display_name | Conformity |
| concepts[1].id | https://openalex.org/C107673813 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5516725778579712 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[1].display_name | Bayesian probability |
| concepts[2].id | https://openalex.org/C149782125 |
| concepts[2].level | 1 |
| concepts[2].score | 0.39451074600219727 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[2].display_name | Econometrics |
| concepts[3].id | https://openalex.org/C15744967 |
| concepts[3].level | 0 |
| concepts[3].score | 0.38760772347450256 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[3].display_name | Psychology |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.36624258756637573 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35391151905059814 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.30978769063949585 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C77805123 |
| concepts[7].level | 1 |
| concepts[7].score | 0.23095330595970154 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[7].display_name | Social psychology |
| keywords[0].id | https://openalex.org/keywords/conformity |
| keywords[0].score | 0.8013996481895447 |
| keywords[0].display_name | Conformity |
| keywords[1].id | https://openalex.org/keywords/bayesian-probability |
| keywords[1].score | 0.5516725778579712 |
| keywords[1].display_name | Bayesian probability |
| keywords[2].id | https://openalex.org/keywords/econometrics |
| keywords[2].score | 0.39451074600219727 |
| keywords[2].display_name | Econometrics |
| keywords[3].id | https://openalex.org/keywords/psychology |
| keywords[3].score | 0.38760772347450256 |
| keywords[3].display_name | Psychology |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.36624258756637573 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.35391151905059814 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.30978769063949585 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/social-psychology |
| keywords[7].score | 0.23095330595970154 |
| keywords[7].display_name | Social psychology |
| language | en |
| locations[0].id | doi:10.1016/j.measen.2021.100330 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210238442 |
| locations[0].source.issn | 2665-9174 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2665-9174 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Measurement Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Measurement: Sensors |
| locations[0].landing_page_url | https://doi.org/10.1016/j.measen.2021.100330 |
| locations[1].id | pmh:oai:bura.brunel.ac.uk:2438/28657 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401473 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Brunel University Research Archive (BURA) (Brunel University London) |
| locations[1].source.host_organization | https://openalex.org/I59433898 |
| locations[1].source.host_organization_name | Brunel University of London |
| locations[1].source.host_organization_lineage | https://openalex.org/I59433898 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference Paper |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://bura.brunel.ac.uk/handle/2438/28657 |
| locations[2].id | pmh:oai:doaj.org/article:e72098efd18347c0a11fa97e464878fb |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Measurement: Sensors, Vol 18, Iss , Pp 100330- (2021) |
| locations[2].landing_page_url | https://doaj.org/article/e72098efd18347c0a11fa97e464878fb |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5014575242 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2311-8725 |
| authorships[0].author.display_name | Yacine Koucha |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59433898 |
| authorships[0].affiliations[0].raw_affiliation_string | Corresponding author.; Brunel University London, Uxbridge, UK |
| authorships[0].institutions[0].id | https://openalex.org/I59433898 |
| authorships[0].institutions[0].ror | https://ror.org/00dn4t376 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59433898 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Brunel University of London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yacine Koucha |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Corresponding author.; Brunel University London, Uxbridge, UK |
| authorships[1].author.id | https://openalex.org/A5083084249 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6640-9691 |
| authorships[1].author.display_name | Alistair Forbes |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I134421475 |
| authorships[1].affiliations[0].raw_affiliation_string | National Physical Laboratory, Teddington, UK |
| authorships[1].institutions[0].id | https://openalex.org/I134421475 |
| authorships[1].institutions[0].ror | https://ror.org/015w2mp89 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I134421475 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | National Physical Laboratory |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Alistair Forbes |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Physical Laboratory, Teddington, UK |
| authorships[2].author.id | https://openalex.org/A5056986595 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2557-8752 |
| authorships[2].author.display_name | Qingping Yang |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I59433898 |
| authorships[2].affiliations[0].raw_affiliation_string | Brunel University London, Uxbridge, UK |
| authorships[2].institutions[0].id | https://openalex.org/I59433898 |
| authorships[2].institutions[0].ror | https://ror.org/00dn4t376 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I59433898 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Brunel University of London |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | QingPing Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Brunel University London, Uxbridge, UK |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.measen.2021.100330 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Bayesian conformity and risk assessment adapted to a form error model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12549 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9865000247955322 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Image and Object Detection Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2011517474, https://openalex.org/W3093361777, https://openalex.org/W2375986109, https://openalex.org/W4312551713, https://openalex.org/W2050458297, https://openalex.org/W2061182527, https://openalex.org/W2361343466, https://openalex.org/W2103765984, https://openalex.org/W4210550854 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.measen.2021.100330 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210238442 |
| best_oa_location.source.issn | 2665-9174 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2665-9174 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Measurement Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Measurement: Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.measen.2021.100330 |
| primary_location.id | doi:10.1016/j.measen.2021.100330 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210238442 |
| primary_location.source.issn | 2665-9174 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2665-9174 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Measurement Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Measurement: Sensors |
| primary_location.landing_page_url | https://doi.org/10.1016/j.measen.2021.100330 |
| publication_date | 2021-09-22 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W139497581, https://openalex.org/W2081719555, https://openalex.org/W1975104579, https://openalex.org/W1987556593, https://openalex.org/W2117861286, https://openalex.org/W2000378423, https://openalex.org/W2595831298, https://openalex.org/W1485489034, https://openalex.org/W40717818 |
| referenced_works_count | 9 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5400000214576721 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.57646564 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |