A Bayesian framework for genome-wide circadian rhythmicity biomarker detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1093/bib/bbaf552
Circadian rhythms are endogenous $\sim $24-h cycles that significantly influence physiological and behavioral processes. These rhythms are governed by a transcriptional–translational feedback loop of core circadian genes and are essential for maintaining overall health. The study of circadian rhythms has expanded into various omics datasets, necessitating accurate analytical methodology for circadian biomarker detection. Here, we introduce a novel Bayesian framework for the detection of circadian rhythms in genome-wide transcriptomic applications that is capable of incorporating prior biological knowledge and adjusting for multiple testing issue via a false discovery rate (FDR) approach. Our framework leverages a Bayesian hierarchical model and employs a reverse jump Markov chain Monte Carlo technique for model selection. Through extensive simulations, our method, BayesCircRhy, demonstrated favorable FDR control over competing methods, robustness against heavier-tailed error distributions, and better performance compared with existing approaches. The method’s efficacy was further validated in two RNA-sequencing data, including a human-restricted feeding data and a mouse aging data, where it successfully identified known and novel circadian genes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1093/bib/bbaf552
- OA Status
- gold
- References
- 36
- OpenAlex ID
- https://openalex.org/W4415696118
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415696118Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1093/bib/bbaf552Digital Object Identifier
- Title
-
A Bayesian framework for genome-wide circadian rhythmicity biomarker detectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-31Full publication date if available
- Authors
-
Haocheng Ding, Lingsong Meng, Yutao Zhang, Andrew J. Bryant, Chengguo Xing, Karyn A. Esser, Li Chen, Y. Feng, Zhiguang HuoList of authors in order
- Landing page
-
https://doi.org/10.1093/bib/bbaf552Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1093/bib/bbaf552Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
36Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415696118 |
|---|---|
| doi | https://doi.org/10.1093/bib/bbaf552 |
| ids.doi | https://doi.org/10.1093/bib/bbaf552 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41148221 |
| ids.openalex | https://openalex.org/W4415696118 |
| fwci | |
| mesh[0].qualifier_ui | Q000235 |
| mesh[0].descriptor_ui | D002940 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | genetics |
| mesh[0].descriptor_name | Circadian Rhythm |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001499 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Bayes Theorem |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D000818 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Animals |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D051379 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Mice |
| mesh[5].qualifier_ui | Q000378 |
| mesh[5].descriptor_ui | D015415 |
| mesh[5].is_major_topic | True |
| mesh[5].qualifier_name | metabolism |
| mesh[5].descriptor_name | Biomarkers |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008390 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Markov Chains |
| mesh[7].qualifier_ui | Q000235 |
| mesh[7].descriptor_ui | D002940 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | genetics |
| mesh[7].descriptor_name | Circadian Rhythm |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D001499 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Bayes Theorem |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000818 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Animals |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D051379 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Mice |
| mesh[12].qualifier_ui | Q000378 |
| mesh[12].descriptor_ui | D015415 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | metabolism |
| mesh[12].descriptor_name | Biomarkers |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D008390 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Markov Chains |
| mesh[14].qualifier_ui | Q000235 |
| mesh[14].descriptor_ui | D002940 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | genetics |
| mesh[14].descriptor_name | Circadian Rhythm |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D001499 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Bayes Theorem |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D000818 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Animals |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D006801 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Humans |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D051379 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Mice |
| mesh[19].qualifier_ui | Q000378 |
| mesh[19].descriptor_ui | D015415 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | metabolism |
| mesh[19].descriptor_name | Biomarkers |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D008390 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Markov Chains |
| mesh[21].qualifier_ui | Q000235 |
| mesh[21].descriptor_ui | D002940 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | genetics |
| mesh[21].descriptor_name | Circadian Rhythm |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D001499 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Bayes Theorem |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000818 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Animals |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D051379 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Mice |
| mesh[26].qualifier_ui | Q000378 |
| mesh[26].descriptor_ui | D015415 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | metabolism |
| mesh[26].descriptor_name | Biomarkers |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D008390 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Markov Chains |
| mesh[28].qualifier_ui | Q000235 |
| mesh[28].descriptor_ui | D002940 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | genetics |
| mesh[28].descriptor_name | Circadian Rhythm |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D001499 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Bayes Theorem |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000818 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Animals |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D006801 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Humans |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D051379 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Mice |
| mesh[33].qualifier_ui | Q000378 |
| mesh[33].descriptor_ui | D015415 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | metabolism |
| mesh[33].descriptor_name | Biomarkers |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D008390 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Markov Chains |
| type | article |
| title | A Bayesian framework for genome-wide circadian rhythmicity biomarker detection |
| biblio.issue | 5 |
| biblio.volume | 26 |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 4011 |
| apc_list.currency | USD |
| apc_list.value_usd | 4011 |
| apc_paid.value | 4011 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4011 |
| language | en |
| locations[0].id | doi:10.1093/bib/bbaf552 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S91767247 |
| locations[0].source.issn | 1467-5463, 1477-4054 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1467-5463 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Briefings in Bioinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310311648 |
| locations[0].source.host_organization_name | Oxford University Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| locations[0].source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Briefings in Bioinformatics |
| locations[0].landing_page_url | https://doi.org/10.1093/bib/bbaf552 |
| locations[1].id | pmid:41148221 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Briefings in bioinformatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41148221 |
| locations[2].id | pmh:oai:europepmc.org:11369917 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12560793 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5091189529 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1379-7824 |
| authorships[0].author.display_name | Haocheng Ding |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25041050 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics , Data Science, and Epidemiology, Augusta University, 1120 15th Street, Augusta, 30912 GA, |
| authorships[0].institutions[0].id | https://openalex.org/I25041050 |
| authorships[0].institutions[0].ror | https://ror.org/012mef835 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25041050 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Augusta University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haocheng Ding |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics , Data Science, and Epidemiology, Augusta University, 1120 15th Street, Augusta, 30912 GA, |
| authorships[1].author.id | https://openalex.org/A5089168960 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4456-1902 |
| authorships[1].author.display_name | Lingsong Meng |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biostatistics , University of Florida, 2004 Mowry Road, Gainesville, 32603 FL, |
| authorships[1].institutions[0].id | https://openalex.org/I33213144 |
| authorships[1].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Florida |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Lingsong Meng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Biostatistics , University of Florida, 2004 Mowry Road, Gainesville, 32603 FL, |
| authorships[2].author.id | https://openalex.org/A5100747968 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5791-0871 |
| authorships[2].author.display_name | Yutao Zhang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biostatistics , University of Florida, 2004 Mowry Road, Gainesville, 32603 FL, |
| authorships[2].institutions[0].id | https://openalex.org/I33213144 |
| authorships[2].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Florida |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yutao Zhang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biostatistics , University of Florida, 2004 Mowry Road, Gainesville, 32603 FL, |
| authorships[3].author.id | https://openalex.org/A5055370303 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9433-3049 |
| authorships[3].author.display_name | Andrew J. Bryant |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[3].affiliations[0].raw_affiliation_string | Division of Pulmonary , Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, 32603 FL, |
| authorships[3].institutions[0].id | https://openalex.org/I33213144 |
| authorships[3].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Florida |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Andrew J Bryant |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Division of Pulmonary , Critical Care, and Sleep Medicine, Department of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, 32603 FL, |
| authorships[4].author.id | https://openalex.org/A5005969908 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-4266-6236 |
| authorships[4].author.display_name | Chengguo Xing |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Medicinal Chemistry , University of Florida, 1225 Center Drive, Gainesville, 32610 FL, |
| authorships[4].institutions[0].id | https://openalex.org/I33213144 |
| authorships[4].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | University of Florida |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chengguo Xing |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Medicinal Chemistry , University of Florida, 1225 Center Drive, Gainesville, 32610 FL, |
| authorships[5].author.id | https://openalex.org/A5035878254 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5791-1441 |
| authorships[5].author.display_name | Karyn A. Esser |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Physiology and Aging , University of Florida, 1345 Center Drive, Gainesville, 32610 FL, |
| authorships[5].institutions[0].id | https://openalex.org/I33213144 |
| authorships[5].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | University of Florida |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Karyn A Esser |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Physiology and Aging , University of Florida, 1345 Center Drive, Gainesville, 32610 FL, |
| authorships[6].author.id | https://openalex.org/A5100379195 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9372-5606 |
| authorships[6].author.display_name | Li Chen |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Biostatistics , University of Florida, 2004 Mowry Road, Gainesville, 32603 FL, |
| authorships[6].institutions[0].id | https://openalex.org/I33213144 |
| authorships[6].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Florida |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Li Chen |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Biostatistics , University of Florida, 2004 Mowry Road, Gainesville, 32603 FL, |
| authorships[7].author.id | https://openalex.org/A5075791698 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-3846-4279 |
| authorships[7].author.display_name | Y. Feng |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Health Outcomes and Biomedical Informatics , University of Florida, 1889 Museum Road, Gainesville, 32611 FL, |
| authorships[7].institutions[0].id | https://openalex.org/I33213144 |
| authorships[7].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | University of Florida |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Yitong Feng |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Health Outcomes and Biomedical Informatics , University of Florida, 1889 Museum Road, Gainesville, 32611 FL, |
| authorships[8].author.id | https://openalex.org/A5015842061 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-8032-4392 |
| authorships[8].author.display_name | Zhiguang Huo |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I33213144 |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Biostatistics , University of Florida, 2004 Mowry Road, Gainesville, 32603 FL, |
| authorships[8].institutions[0].id | https://openalex.org/I33213144 |
| authorships[8].institutions[0].ror | https://ror.org/02y3ad647 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I33213144 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | University of Florida |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Zhiguang Huo |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Biostatistics , University of Florida, 2004 Mowry Road, Gainesville, 32603 FL, |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1093/bib/bbaf552 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-30T00:00:00 |
| display_name | A Bayesian framework for genome-wide circadian rhythmicity biomarker detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1093/bib/bbaf552 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S91767247 |
| best_oa_location.source.issn | 1467-5463, 1477-4054 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1467-5463 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Briefings in Bioinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310311648 |
| best_oa_location.source.host_organization_name | Oxford University Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| best_oa_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Briefings in Bioinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.1093/bib/bbaf552 |
| primary_location.id | doi:10.1093/bib/bbaf552 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S91767247 |
| primary_location.source.issn | 1467-5463, 1477-4054 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1467-5463 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Briefings in Bioinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310311648 |
| primary_location.source.host_organization_name | Oxford University Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311648, https://openalex.org/P4310311647 |
| primary_location.source.host_organization_lineage_names | Oxford University Press, University of Oxford |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Briefings in Bioinformatics |
| primary_location.landing_page_url | https://doi.org/10.1093/bib/bbaf552 |
| publication_date | 2025-08-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1970863361, https://openalex.org/W2054936731, https://openalex.org/W2102594642, https://openalex.org/W1966211676, https://openalex.org/W2506677186, https://openalex.org/W2112816452, https://openalex.org/W2217406169, https://openalex.org/W2969073480, https://openalex.org/W1481869011, https://openalex.org/W1971883897, https://openalex.org/W2117375244, https://openalex.org/W2889589921, https://openalex.org/W2133918896, https://openalex.org/W2787429377, https://openalex.org/W2125600846, https://openalex.org/W2091531174, https://openalex.org/W2801070441, https://openalex.org/W2122927821, https://openalex.org/W2164824098, https://openalex.org/W2098342740, https://openalex.org/W3129794854, https://openalex.org/W2138053245, https://openalex.org/W2137810258, https://openalex.org/W2128397850, https://openalex.org/W2156003764, https://openalex.org/W2056395995, https://openalex.org/W2463616135, https://openalex.org/W2765681392, https://openalex.org/W3011875921, https://openalex.org/W1603353793, https://openalex.org/W2106706098, https://openalex.org/W2056760934, https://openalex.org/W2091841926, https://openalex.org/W2170264612, https://openalex.org/W4379094018, https://openalex.org/W4313827673 |
| referenced_works_count | 36 |
| abstract_inverted_index.a | 20, 57, 86, 95, 101, 148, 153 |
| abstract_inverted_index.by | 19 |
| abstract_inverted_index.in | 67, 143 |
| abstract_inverted_index.is | 72 |
| abstract_inverted_index.it | 158 |
| abstract_inverted_index.of | 24, 37, 64, 74 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.FDR | 120 |
| abstract_inverted_index.Our | 92 |
| abstract_inverted_index.The | 35, 137 |
| abstract_inverted_index.and | 12, 28, 79, 99, 130, 152, 162 |
| abstract_inverted_index.are | 3, 17, 29 |
| abstract_inverted_index.for | 31, 50, 61, 81, 109 |
| abstract_inverted_index.has | 40 |
| abstract_inverted_index.our | 115 |
| abstract_inverted_index.the | 62 |
| abstract_inverted_index.two | 144 |
| abstract_inverted_index.via | 85 |
| abstract_inverted_index.was | 140 |
| abstract_inverted_index.core | 25 |
| abstract_inverted_index.data | 151 |
| abstract_inverted_index.into | 42 |
| abstract_inverted_index.jump | 103 |
| abstract_inverted_index.loop | 23 |
| abstract_inverted_index.over | 122 |
| abstract_inverted_index.rate | 89 |
| abstract_inverted_index.that | 8, 71 |
| abstract_inverted_index.with | 134 |
| abstract_inverted_index.$24-h | 6 |
| abstract_inverted_index.$\sim | 5 |
| abstract_inverted_index.(FDR) | 90 |
| abstract_inverted_index.Carlo | 107 |
| abstract_inverted_index.Here, | 54 |
| abstract_inverted_index.Monte | 106 |
| abstract_inverted_index.These | 15 |
| abstract_inverted_index.aging | 155 |
| abstract_inverted_index.chain | 105 |
| abstract_inverted_index.data, | 146, 156 |
| abstract_inverted_index.error | 128 |
| abstract_inverted_index.false | 87 |
| abstract_inverted_index.genes | 27 |
| abstract_inverted_index.issue | 84 |
| abstract_inverted_index.known | 161 |
| abstract_inverted_index.model | 98, 110 |
| abstract_inverted_index.mouse | 154 |
| abstract_inverted_index.novel | 58, 163 |
| abstract_inverted_index.omics | 44 |
| abstract_inverted_index.prior | 76 |
| abstract_inverted_index.study | 36 |
| abstract_inverted_index.where | 157 |
| abstract_inverted_index.Markov | 104 |
| abstract_inverted_index.better | 131 |
| abstract_inverted_index.cycles | 7 |
| abstract_inverted_index.genes. | 165 |
| abstract_inverted_index.Through | 112 |
| abstract_inverted_index.against | 126 |
| abstract_inverted_index.capable | 73 |
| abstract_inverted_index.control | 121 |
| abstract_inverted_index.employs | 100 |
| abstract_inverted_index.feeding | 150 |
| abstract_inverted_index.further | 141 |
| abstract_inverted_index.health. | 34 |
| abstract_inverted_index.method, | 116 |
| abstract_inverted_index.overall | 33 |
| abstract_inverted_index.reverse | 102 |
| abstract_inverted_index.rhythms | 2, 16, 39, 66 |
| abstract_inverted_index.testing | 83 |
| abstract_inverted_index.various | 43 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Bayesian | 59, 96 |
| abstract_inverted_index.accurate | 47 |
| abstract_inverted_index.compared | 133 |
| abstract_inverted_index.efficacy | 139 |
| abstract_inverted_index.existing | 135 |
| abstract_inverted_index.expanded | 41 |
| abstract_inverted_index.feedback | 22 |
| abstract_inverted_index.governed | 18 |
| abstract_inverted_index.methods, | 124 |
| abstract_inverted_index.multiple | 82 |
| abstract_inverted_index.Circadian | 1 |
| abstract_inverted_index.adjusting | 80 |
| abstract_inverted_index.approach. | 91 |
| abstract_inverted_index.biomarker | 52 |
| abstract_inverted_index.circadian | 26, 38, 51, 65, 164 |
| abstract_inverted_index.competing | 123 |
| abstract_inverted_index.datasets, | 45 |
| abstract_inverted_index.detection | 63 |
| abstract_inverted_index.discovery | 88 |
| abstract_inverted_index.essential | 30 |
| abstract_inverted_index.extensive | 113 |
| abstract_inverted_index.favorable | 119 |
| abstract_inverted_index.framework | 60, 93 |
| abstract_inverted_index.including | 147 |
| abstract_inverted_index.influence | 10 |
| abstract_inverted_index.introduce | 56 |
| abstract_inverted_index.knowledge | 78 |
| abstract_inverted_index.leverages | 94 |
| abstract_inverted_index.technique | 108 |
| abstract_inverted_index.validated | 142 |
| abstract_inverted_index.analytical | 48 |
| abstract_inverted_index.behavioral | 13 |
| abstract_inverted_index.biological | 77 |
| abstract_inverted_index.detection. | 53 |
| abstract_inverted_index.endogenous | 4 |
| abstract_inverted_index.identified | 160 |
| abstract_inverted_index.method’s | 138 |
| abstract_inverted_index.processes. | 14 |
| abstract_inverted_index.robustness | 125 |
| abstract_inverted_index.selection. | 111 |
| abstract_inverted_index.approaches. | 136 |
| abstract_inverted_index.genome-wide | 68 |
| abstract_inverted_index.maintaining | 32 |
| abstract_inverted_index.methodology | 49 |
| abstract_inverted_index.performance | 132 |
| abstract_inverted_index.applications | 70 |
| abstract_inverted_index.demonstrated | 118 |
| abstract_inverted_index.hierarchical | 97 |
| abstract_inverted_index.simulations, | 114 |
| abstract_inverted_index.successfully | 159 |
| abstract_inverted_index.BayesCircRhy, | 117 |
| abstract_inverted_index.incorporating | 75 |
| abstract_inverted_index.necessitating | 46 |
| abstract_inverted_index.physiological | 11 |
| abstract_inverted_index.significantly | 9 |
| abstract_inverted_index.RNA-sequencing | 145 |
| abstract_inverted_index.distributions, | 129 |
| abstract_inverted_index.heavier-tailed | 127 |
| abstract_inverted_index.transcriptomic | 69 |
| abstract_inverted_index.human-restricted | 149 |
| abstract_inverted_index.transcriptional–translational | 21 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |