A Bayesian Hidden Semi-Markov Model with Covariate-Dependent State Duration Parameters for High-Frequency Environmental Data Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2109.09949
Environmental time series data observed at high frequencies can be studied with approaches such as hidden Markov and semi-Markov models (HMM and HSMM). HSMMs extend the HMM by explicitly modeling the time spent in each state. In a discrete-time HSMM, the duration in each state can be modeled with a zero-truncated Poisson distribution, where the duration parameter may be state-specific but constant in time. We extend the HSMM by allowing the state-specific duration parameters to vary in time and model them as a function of known covariates observed over a period of time leading up to a state transition. In addition, we propose a data subsampling approach given that high-frequency data can violate the conditional independence assumption of the HSMM. We apply the model to high-frequency data collected by an instrumented buoy in Lake Mendota. We model the phycocyanin concentration, which is used in aquatic systems to estimate the relative abundance of blue-green algae, and identify important time-varying effects associated with the duration in each state.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2109.09949
- https://arxiv.org/pdf/2109.09949
- OA Status
- green
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3200590838
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3200590838Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2109.09949Digital Object Identifier
- Title
-
A Bayesian Hidden Semi-Markov Model with Covariate-Dependent State Duration Parameters for High-Frequency Environmental DataWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-21Full publication date if available
- Authors
-
Shirley Rojas‐Salazar, Erin M. Schliep, Christopher K. Wikle, Emily H. Stanley, Stephen R. Carpenter, Noah R. LottigList of authors in order
- Landing page
-
https://arxiv.org/abs/2109.09949Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2109.09949Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2109.09949Direct OA link when available
- Concepts
-
Hidden semi-Markov model, Covariate, Hidden Markov model, Duration (music), Statistics, Poisson distribution, Econometrics, Count data, Conditional independence, State (computer science), Mathematics, Markov chain, Markov model, Computer science, Artificial intelligence, Algorithm, Markov property, Physics, AcousticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3200590838 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2109.09949 |
| ids.doi | https://doi.org/10.48550/arxiv.2109.09949 |
| ids.mag | 3200590838 |
| ids.openalex | https://openalex.org/W3200590838 |
| fwci | |
| type | preprint |
| title | A Bayesian Hidden Semi-Markov Model with Covariate-Dependent State Duration Parameters for High-Frequency Environmental Data |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11901 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9821000099182129 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Bayesian Methods and Mixture Models |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9793000221252441 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T11303 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9657999873161316 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Bayesian Modeling and Causal Inference |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C64939953 |
| concepts[0].level | 5 |
| concepts[0].score | 0.752474308013916 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3859882 |
| concepts[0].display_name | Hidden semi-Markov model |
| concepts[1].id | https://openalex.org/C119043178 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7300136089324951 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q320723 |
| concepts[1].display_name | Covariate |
| concepts[2].id | https://openalex.org/C23224414 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6833400726318359 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q176769 |
| concepts[2].display_name | Hidden Markov model |
| concepts[3].id | https://openalex.org/C112758219 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6504281759262085 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q16038819 |
| concepts[3].display_name | Duration (music) |
| concepts[4].id | https://openalex.org/C105795698 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5457077622413635 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[4].display_name | Statistics |
| concepts[5].id | https://openalex.org/C100906024 |
| concepts[5].level | 2 |
| concepts[5].score | 0.535775899887085 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[5].display_name | Poisson distribution |
| concepts[6].id | https://openalex.org/C149782125 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4857409596443176 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[6].display_name | Econometrics |
| concepts[7].id | https://openalex.org/C33643355 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4836488962173462 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[7].display_name | Count data |
| concepts[8].id | https://openalex.org/C79772020 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45104336738586426 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5159264 |
| concepts[8].display_name | Conditional independence |
| concepts[9].id | https://openalex.org/C48103436 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41702359914779663 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[9].display_name | State (computer science) |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.40063828229904175 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C98763669 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3833540678024292 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[11].display_name | Markov chain |
| concepts[12].id | https://openalex.org/C163836022 |
| concepts[12].level | 3 |
| concepts[12].score | 0.3817499279975891 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q6771326 |
| concepts[12].display_name | Markov model |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3436497151851654 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.23030298948287964 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C11413529 |
| concepts[15].level | 1 |
| concepts[15].score | 0.22615280747413635 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[15].display_name | Algorithm |
| concepts[16].id | https://openalex.org/C189973286 |
| concepts[16].level | 4 |
| concepts[16].score | 0.19100815057754517 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q176695 |
| concepts[16].display_name | Markov property |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.10329705476760864 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C24890656 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[18].display_name | Acoustics |
| keywords[0].id | https://openalex.org/keywords/hidden-semi-markov-model |
| keywords[0].score | 0.752474308013916 |
| keywords[0].display_name | Hidden semi-Markov model |
| keywords[1].id | https://openalex.org/keywords/covariate |
| keywords[1].score | 0.7300136089324951 |
| keywords[1].display_name | Covariate |
| keywords[2].id | https://openalex.org/keywords/hidden-markov-model |
| keywords[2].score | 0.6833400726318359 |
| keywords[2].display_name | Hidden Markov model |
| keywords[3].id | https://openalex.org/keywords/duration |
| keywords[3].score | 0.6504281759262085 |
| keywords[3].display_name | Duration (music) |
| keywords[4].id | https://openalex.org/keywords/statistics |
| keywords[4].score | 0.5457077622413635 |
| keywords[4].display_name | Statistics |
| keywords[5].id | https://openalex.org/keywords/poisson-distribution |
| keywords[5].score | 0.535775899887085 |
| keywords[5].display_name | Poisson distribution |
| keywords[6].id | https://openalex.org/keywords/econometrics |
| keywords[6].score | 0.4857409596443176 |
| keywords[6].display_name | Econometrics |
| keywords[7].id | https://openalex.org/keywords/count-data |
| keywords[7].score | 0.4836488962173462 |
| keywords[7].display_name | Count data |
| keywords[8].id | https://openalex.org/keywords/conditional-independence |
| keywords[8].score | 0.45104336738586426 |
| keywords[8].display_name | Conditional independence |
| keywords[9].id | https://openalex.org/keywords/state |
| keywords[9].score | 0.41702359914779663 |
| keywords[9].display_name | State (computer science) |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.40063828229904175 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/markov-chain |
| keywords[11].score | 0.3833540678024292 |
| keywords[11].display_name | Markov chain |
| keywords[12].id | https://openalex.org/keywords/markov-model |
| keywords[12].score | 0.3817499279975891 |
| keywords[12].display_name | Markov model |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.3436497151851654 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.23030298948287964 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/algorithm |
| keywords[15].score | 0.22615280747413635 |
| keywords[15].display_name | Algorithm |
| keywords[16].id | https://openalex.org/keywords/markov-property |
| keywords[16].score | 0.19100815057754517 |
| keywords[16].display_name | Markov property |
| keywords[17].id | https://openalex.org/keywords/physics |
| keywords[17].score | 0.10329705476760864 |
| keywords[17].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2109.09949 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2109.09949 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2109.09949 |
| locations[1].id | doi:10.48550/arxiv.2109.09949 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2109.09949 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5006837777 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2117-5769 |
| authorships[0].author.display_name | Shirley Rojas‐Salazar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shirley Rojas-Salazar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5044191969 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2803-3467 |
| authorships[1].author.display_name | Erin M. Schliep |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Erin M. Schliep |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067284113 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0655-2696 |
| authorships[2].author.display_name | Christopher K. Wikle |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Christopher K. Wikle |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5080951776 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4922-8121 |
| authorships[3].author.display_name | Emily H. Stanley |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Emily H. Stanley |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5034039087 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8097-8700 |
| authorships[4].author.display_name | Stephen R. Carpenter |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Stephen R. Carpenter |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5054163793 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1599-8144 |
| authorships[5].author.display_name | Noah R. Lottig |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Noah R. Lottig |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2109.09949 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-09-27T00:00:00 |
| display_name | A Bayesian Hidden Semi-Markov Model with Covariate-Dependent State Duration Parameters for High-Frequency Environmental Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11901 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9821000099182129 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Bayesian Methods and Mixture Models |
| related_works | https://openalex.org/W2382132287, https://openalex.org/W2161328464, https://openalex.org/W2719817406, https://openalex.org/W2738224259, https://openalex.org/W3113307220, https://openalex.org/W2379333870, https://openalex.org/W1510894296, https://openalex.org/W2095453601, https://openalex.org/W4385889111, https://openalex.org/W2604015228 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2109.09949 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2109.09949 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2109.09949 |
| primary_location.id | pmh:oai:arXiv.org:2109.09949 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2109.09949 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2109.09949 |
| publication_date | 2021-09-21 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3027751917, https://openalex.org/W2999868636, https://openalex.org/W237209759, https://openalex.org/W2125838338, https://openalex.org/W3172623273, https://openalex.org/W2058177657, https://openalex.org/W2057765075, https://openalex.org/W2061964921, https://openalex.org/W3041239225, https://openalex.org/W2093223772, https://openalex.org/W2414577866, https://openalex.org/W2076618452, https://openalex.org/W2622738426, https://openalex.org/W2753034091, https://openalex.org/W1980592963, https://openalex.org/W3008732022, https://openalex.org/W2015519151, https://openalex.org/W1969775054, https://openalex.org/W2074069540, https://openalex.org/W2995690589, https://openalex.org/W2132991226, https://openalex.org/W2136019741, https://openalex.org/W2508057505, https://openalex.org/W3092585348, https://openalex.org/W2211250037 |
| referenced_works_count | 25 |
| abstract_inverted_index.a | 37, 49, 82, 89, 96, 103 |
| abstract_inverted_index.In | 36, 99 |
| abstract_inverted_index.We | 64, 120, 135 |
| abstract_inverted_index.an | 129 |
| abstract_inverted_index.as | 14, 81 |
| abstract_inverted_index.at | 5 |
| abstract_inverted_index.be | 9, 46, 58 |
| abstract_inverted_index.by | 27, 68, 128 |
| abstract_inverted_index.in | 33, 42, 62, 76, 132, 143, 163 |
| abstract_inverted_index.is | 141 |
| abstract_inverted_index.of | 84, 91, 117, 151 |
| abstract_inverted_index.to | 74, 95, 124, 146 |
| abstract_inverted_index.up | 94 |
| abstract_inverted_index.we | 101 |
| abstract_inverted_index.HMM | 26 |
| abstract_inverted_index.and | 17, 21, 78, 154 |
| abstract_inverted_index.but | 60 |
| abstract_inverted_index.can | 8, 45, 111 |
| abstract_inverted_index.may | 57 |
| abstract_inverted_index.the | 25, 30, 40, 54, 66, 70, 113, 118, 122, 137, 148, 161 |
| abstract_inverted_index.(HMM | 20 |
| abstract_inverted_index.HSMM | 67 |
| abstract_inverted_index.Lake | 133 |
| abstract_inverted_index.buoy | 131 |
| abstract_inverted_index.data | 3, 104, 110, 126 |
| abstract_inverted_index.each | 34, 43, 164 |
| abstract_inverted_index.high | 6 |
| abstract_inverted_index.over | 88 |
| abstract_inverted_index.such | 13 |
| abstract_inverted_index.that | 108 |
| abstract_inverted_index.them | 80 |
| abstract_inverted_index.time | 1, 31, 77, 92 |
| abstract_inverted_index.used | 142 |
| abstract_inverted_index.vary | 75 |
| abstract_inverted_index.with | 11, 48, 160 |
| abstract_inverted_index.HSMM, | 39 |
| abstract_inverted_index.HSMM. | 119 |
| abstract_inverted_index.HSMMs | 23 |
| abstract_inverted_index.apply | 121 |
| abstract_inverted_index.given | 107 |
| abstract_inverted_index.known | 85 |
| abstract_inverted_index.model | 79, 123, 136 |
| abstract_inverted_index.spent | 32 |
| abstract_inverted_index.state | 44, 97 |
| abstract_inverted_index.time. | 63 |
| abstract_inverted_index.where | 53 |
| abstract_inverted_index.which | 140 |
| abstract_inverted_index.HSMM). | 22 |
| abstract_inverted_index.Markov | 16 |
| abstract_inverted_index.algae, | 153 |
| abstract_inverted_index.extend | 24, 65 |
| abstract_inverted_index.hidden | 15 |
| abstract_inverted_index.models | 19 |
| abstract_inverted_index.period | 90 |
| abstract_inverted_index.series | 2 |
| abstract_inverted_index.state. | 35, 165 |
| abstract_inverted_index.Poisson | 51 |
| abstract_inverted_index.aquatic | 144 |
| abstract_inverted_index.effects | 158 |
| abstract_inverted_index.leading | 93 |
| abstract_inverted_index.modeled | 47 |
| abstract_inverted_index.propose | 102 |
| abstract_inverted_index.studied | 10 |
| abstract_inverted_index.systems | 145 |
| abstract_inverted_index.violate | 112 |
| abstract_inverted_index.Mendota. | 134 |
| abstract_inverted_index.allowing | 69 |
| abstract_inverted_index.approach | 106 |
| abstract_inverted_index.constant | 61 |
| abstract_inverted_index.duration | 41, 55, 72, 162 |
| abstract_inverted_index.estimate | 147 |
| abstract_inverted_index.function | 83 |
| abstract_inverted_index.identify | 155 |
| abstract_inverted_index.modeling | 29 |
| abstract_inverted_index.observed | 4, 87 |
| abstract_inverted_index.relative | 149 |
| abstract_inverted_index.abundance | 150 |
| abstract_inverted_index.addition, | 100 |
| abstract_inverted_index.collected | 127 |
| abstract_inverted_index.important | 156 |
| abstract_inverted_index.parameter | 56 |
| abstract_inverted_index.approaches | 12 |
| abstract_inverted_index.associated | 159 |
| abstract_inverted_index.assumption | 116 |
| abstract_inverted_index.blue-green | 152 |
| abstract_inverted_index.covariates | 86 |
| abstract_inverted_index.explicitly | 28 |
| abstract_inverted_index.parameters | 73 |
| abstract_inverted_index.conditional | 114 |
| abstract_inverted_index.frequencies | 7 |
| abstract_inverted_index.phycocyanin | 138 |
| abstract_inverted_index.semi-Markov | 18 |
| abstract_inverted_index.subsampling | 105 |
| abstract_inverted_index.transition. | 98 |
| abstract_inverted_index.independence | 115 |
| abstract_inverted_index.instrumented | 130 |
| abstract_inverted_index.time-varying | 157 |
| abstract_inverted_index.Environmental | 0 |
| abstract_inverted_index.discrete-time | 38 |
| abstract_inverted_index.distribution, | 52 |
| abstract_inverted_index.concentration, | 139 |
| abstract_inverted_index.high-frequency | 109, 125 |
| abstract_inverted_index.state-specific | 59, 71 |
| abstract_inverted_index.zero-truncated | 50 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/14 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Life below water |
| citation_normalized_percentile |