A Beamformer-Particle Filter Framework for Localization of Correlated EEG Sources Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.1109/jbhi.2015.2413752
Electroencephalography (EEG)-based brain computer interface (BCI) is the most studied noninvasive interface to build a direct communication pathway between the brain and an external device. However, correlated noises in EEG measurements still constitute a significant challenge. Alternatively, building BCIs based on filtered brain activity source signals instead of using their surface projections, obtained from the noisy EEG signals, is a promising and not well-explored direction. In this context, finding the locations and waveforms of inner brain sources represents a crucial task for advancing source-based noninvasive BCI technologies. In this paper, we propose a novel multicore beamformer particle filter (multicore BPF) to estimate the EEG brain source spatial locations and their corresponding waveforms. In contrast to conventional (single-core) beamforming spatial filters, the developed multicore BPF considers explicitly temporal correlation among the estimated brain sources by suppressing activation from regions with interfering coherent sources. The hybrid multicore BPF brings together the advantages of both deterministic and Bayesian inverse problem algorithms in order to improve the estimation accuracy. It solves the brain activity localization problem without prior information about approximate areas of source locations. Moreover, the multicore BPF reduces the dimensionality of the problem to half compared with the PF solution, thus alleviating the curse of dimensionality problem. The results, based on generated and real EEG data, show that the proposed framework recovers correctly the dominant sources of brain activity.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jbhi.2015.2413752
- OA Status
- hybrid
- Cited By
- 13
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2277207740
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2277207740Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jbhi.2015.2413752Digital Object Identifier
- Title
-
A Beamformer-Particle Filter Framework for Localization of Correlated EEG SourcesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-03-16Full publication date if available
- Authors
-
Pétia Georgieva, Nidhal Bouaynaya, Filipe Silva, Lyudmila Mihaylova, Lakhmi C. JainList of authors in order
- Landing page
-
https://doi.org/10.1109/jbhi.2015.2413752Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jbhi.2015.2413752Direct OA link when available
- Concepts
-
Computer science, Electroencephalography, Context (archaeology), Particle filter, Curse of dimensionality, Brain–computer interface, Multi-core processor, Artificial intelligence, Spatial filter, Pattern recognition (psychology), Magnetoencephalography, Beamforming, Filter (signal processing), Waveform, Computer vision, Neuroscience, Telecommunications, Biology, Operating system, Paleontology, RadarTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 2, 2020: 3, 2019: 1, 2018: 4, 2017: 2Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2277207740 |
|---|---|
| doi | https://doi.org/10.1109/jbhi.2015.2413752 |
| ids.doi | https://doi.org/10.1109/jbhi.2015.2413752 |
| ids.mag | 2277207740 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/25794405 |
| ids.openalex | https://openalex.org/W2277207740 |
| fwci | 1.15252444 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000328 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Adult |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000465 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Algorithms |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D001499 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Bayes Theorem |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D062207 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Brain-Computer Interfaces |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D004569 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Electroencephalography |
| mesh[5].qualifier_ui | Q000502 |
| mesh[5].descriptor_ui | D005074 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | physiology |
| mesh[5].descriptor_name | Evoked Potentials, Visual |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D005260 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Female |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D008297 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Male |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D012815 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[10].qualifier_ui | Q000502 |
| mesh[10].descriptor_ui | D014793 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | physiology |
| mesh[10].descriptor_name | Visual Cortex |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D055815 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Young Adult |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000328 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Adult |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000465 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Algorithms |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D001499 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Bayes Theorem |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D062207 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Brain-Computer Interfaces |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D004569 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Electroencephalography |
| mesh[17].qualifier_ui | Q000502 |
| mesh[17].descriptor_ui | D005074 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | physiology |
| mesh[17].descriptor_name | Evoked Potentials, Visual |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D005260 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Female |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D006801 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Humans |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D008297 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Male |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D012815 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[22].qualifier_ui | Q000502 |
| mesh[22].descriptor_ui | D014793 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | physiology |
| mesh[22].descriptor_name | Visual Cortex |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D055815 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Young Adult |
| type | article |
| title | A Beamformer-Particle Filter Framework for Localization of Correlated EEG Sources |
| awards[0].id | https://openalex.org/G4606937817 |
| awards[0].funder_id | https://openalex.org/F4320334627 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP/K021516/1 |
| awards[0].funder_display_name | Engineering and Physical Sciences Research Council |
| awards[1].id | https://openalex.org/G4001564037 |
| awards[1].funder_id | https://openalex.org/F4320337354 |
| awards[1].display_name | |
| awards[1].funder_award_id | R01GM096191 |
| awards[1].funder_display_name | National Institute of General Medical Sciences |
| awards[2].id | https://openalex.org/G6022869459 |
| awards[2].funder_id | https://openalex.org/F4320334627 |
| awards[2].display_name | |
| awards[2].funder_award_id | PEst-C/EEI/UI0127/2011 |
| awards[2].funder_display_name | Engineering and Physical Sciences Research Council |
| biblio.issue | 3 |
| biblio.volume | 20 |
| biblio.last_page | 892 |
| biblio.first_page | 880 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T10860 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9987999796867371 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Speech and Audio Processing |
| funders[0].id | https://openalex.org/F4320334627 |
| funders[0].ror | https://ror.org/0439y7842 |
| funders[0].display_name | Engineering and Physical Sciences Research Council |
| funders[1].id | https://openalex.org/F4320337354 |
| funders[1].ror | https://ror.org/04q48ey07 |
| funders[1].display_name | National Institute of General Medical Sciences |
| is_xpac | False |
| apc_list | |
| apc_paid.value | 1342 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1447 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7259393930435181 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C522805319 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6569437384605408 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[1].display_name | Electroencephalography |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5702922940254211 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C52421305 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5698374509811401 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1151499 |
| concepts[3].display_name | Particle filter |
| concepts[4].id | https://openalex.org/C111030470 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5509747266769409 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[4].display_name | Curse of dimensionality |
| concepts[5].id | https://openalex.org/C173201364 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5389983654022217 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[5].display_name | Brain–computer interface |
| concepts[6].id | https://openalex.org/C78766204 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5061988234519958 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q555032 |
| concepts[6].display_name | Multi-core processor |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4912711977958679 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C121475858 |
| concepts[8].level | 2 |
| concepts[8].score | 0.46462827920913696 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2735911 |
| concepts[8].display_name | Spatial filter |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.45953842997550964 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C556910895 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4496312141418457 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q384188 |
| concepts[10].display_name | Magnetoencephalography |
| concepts[11].id | https://openalex.org/C54197355 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44945070147514343 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q5782992 |
| concepts[11].display_name | Beamforming |
| concepts[12].id | https://openalex.org/C106131492 |
| concepts[12].level | 2 |
| concepts[12].score | 0.44508078694343567 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[12].display_name | Filter (signal processing) |
| concepts[13].id | https://openalex.org/C197424946 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4278600811958313 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1165717 |
| concepts[13].display_name | Waveform |
| concepts[14].id | https://openalex.org/C31972630 |
| concepts[14].level | 1 |
| concepts[14].score | 0.1647653877735138 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[14].display_name | Computer vision |
| concepts[15].id | https://openalex.org/C169760540 |
| concepts[15].level | 1 |
| concepts[15].score | 0.09302300214767456 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[15].display_name | Neuroscience |
| concepts[16].id | https://openalex.org/C76155785 |
| concepts[16].level | 1 |
| concepts[16].score | 0.08156493306159973 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[16].display_name | Telecommunications |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C111919701 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[18].display_name | Operating system |
| concepts[19].id | https://openalex.org/C151730666 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[19].display_name | Paleontology |
| concepts[20].id | https://openalex.org/C554190296 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[20].display_name | Radar |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7259393930435181 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/electroencephalography |
| keywords[1].score | 0.6569437384605408 |
| keywords[1].display_name | Electroencephalography |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.5702922940254211 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/particle-filter |
| keywords[3].score | 0.5698374509811401 |
| keywords[3].display_name | Particle filter |
| keywords[4].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[4].score | 0.5509747266769409 |
| keywords[4].display_name | Curse of dimensionality |
| keywords[5].id | https://openalex.org/keywords/brain–computer-interface |
| keywords[5].score | 0.5389983654022217 |
| keywords[5].display_name | Brain–computer interface |
| keywords[6].id | https://openalex.org/keywords/multi-core-processor |
| keywords[6].score | 0.5061988234519958 |
| keywords[6].display_name | Multi-core processor |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4912711977958679 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/spatial-filter |
| keywords[8].score | 0.46462827920913696 |
| keywords[8].display_name | Spatial filter |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.45953842997550964 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/magnetoencephalography |
| keywords[10].score | 0.4496312141418457 |
| keywords[10].display_name | Magnetoencephalography |
| keywords[11].id | https://openalex.org/keywords/beamforming |
| keywords[11].score | 0.44945070147514343 |
| keywords[11].display_name | Beamforming |
| keywords[12].id | https://openalex.org/keywords/filter |
| keywords[12].score | 0.44508078694343567 |
| keywords[12].display_name | Filter (signal processing) |
| keywords[13].id | https://openalex.org/keywords/waveform |
| keywords[13].score | 0.4278600811958313 |
| keywords[13].display_name | Waveform |
| keywords[14].id | https://openalex.org/keywords/computer-vision |
| keywords[14].score | 0.1647653877735138 |
| keywords[14].display_name | Computer vision |
| keywords[15].id | https://openalex.org/keywords/neuroscience |
| keywords[15].score | 0.09302300214767456 |
| keywords[15].display_name | Neuroscience |
| keywords[16].id | https://openalex.org/keywords/telecommunications |
| keywords[16].score | 0.08156493306159973 |
| keywords[16].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.1109/jbhi.2015.2413752 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2495854775 |
| locations[0].source.issn | 2168-2194, 2168-2208 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2168-2194 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Journal of Biomedical and Health Informatics |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Biomedical and Health Informatics |
| locations[0].landing_page_url | https://doi.org/10.1109/jbhi.2015.2413752 |
| locations[1].id | pmid:25794405 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE journal of biomedical and health informatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/25794405 |
| locations[2].id | pmh:oai:eprints.whiterose.ac.uk:84158 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400854 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | White Rose Research Online (University of Leeds, The University of Sheffield, University of York) |
| locations[2].source.host_organization | https://openalex.org/I2800616092 |
| locations[2].source.host_organization_name | White Rose University Consortium |
| locations[2].source.host_organization_lineage | https://openalex.org/I2800616092 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | acceptedVersion |
| locations[2].raw_type | Article |
| locations[2].license_id | |
| locations[2].is_accepted | True |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | |
| locations[3].id | pmh:oai:urm_publish:9916109501101831 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306402528 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | UniSA Research Outputs Repository (University of South Australia) |
| locations[3].source.host_organization | https://openalex.org/I170239107 |
| locations[3].source.host_organization_name | University of South Australia |
| locations[3].source.host_organization_lineage | https://openalex.org/I170239107 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://hdl.handle.net/11541.2/123982 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5041531122 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6424-6590 |
| authorships[0].author.display_name | Pétia Georgieva |
| authorships[0].countries | PT |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I60858718 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Electronics Engineering and Telematics of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal |
| authorships[0].institutions[0].id | https://openalex.org/I60858718 |
| authorships[0].institutions[0].ror | https://ror.org/00nt41z93 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I60858718 |
| authorships[0].institutions[0].country_code | PT |
| authorships[0].institutions[0].display_name | University of Aveiro |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Petia Georgieva |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Electronics Engineering and Telematics of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal |
| authorships[1].author.id | https://openalex.org/A5108091576 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Nidhal Bouaynaya |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I44265643 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ, USA |
| authorships[1].institutions[0].id | https://openalex.org/I44265643 |
| authorships[1].institutions[0].ror | https://ror.org/049v69k10 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I44265643 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Rowan University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nidhal Bouaynaya |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electrical and Computer Engineering, Rowan University, Glassboro, NJ, USA |
| authorships[2].author.id | https://openalex.org/A5023217241 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6191-0727 |
| authorships[2].author.display_name | Filipe Silva |
| authorships[2].countries | PT |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I60858718 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Electronics Engineering and Telematics of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal |
| authorships[2].institutions[0].id | https://openalex.org/I60858718 |
| authorships[2].institutions[0].ror | https://ror.org/00nt41z93 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I60858718 |
| authorships[2].institutions[0].country_code | PT |
| authorships[2].institutions[0].display_name | University of Aveiro |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Filipe Silva |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Electronics Engineering and Telematics of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal |
| authorships[3].author.id | https://openalex.org/A5006505402 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5856-2223 |
| authorships[3].author.display_name | Lyudmila Mihaylova |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I91136226 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K. |
| authorships[3].institutions[0].id | https://openalex.org/I91136226 |
| authorships[3].institutions[0].ror | https://ror.org/05krs5044 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I91136226 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University of Sheffield |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lyudmila Mihaylova |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, U.K. |
| authorships[4].author.id | https://openalex.org/A5108075502 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-5220-5622 |
| authorships[4].author.display_name | Lakhmi C. Jain |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I170239107 |
| authorships[4].affiliations[0].raw_affiliation_string | University of South Australia, Adelaide, SA, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I170239107 |
| authorships[4].institutions[0].ror | https://ror.org/01p93h210 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I170239107 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | University of South Australia |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Lakhmi C. Jain |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of South Australia, Adelaide, SA, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jbhi.2015.2413752 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2016-06-24T00:00:00 |
| display_name | A Beamformer-Particle Filter Framework for Localization of Correlated EEG Sources |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2090251673, https://openalex.org/W3202969339, https://openalex.org/W4237513258, https://openalex.org/W3096545521, https://openalex.org/W2410200900, https://openalex.org/W2044053727, https://openalex.org/W2013261033, https://openalex.org/W1994410349, https://openalex.org/W3177028067, https://openalex.org/W2904049950 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2020 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2019 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2018 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2017 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2016 |
| counts_by_year[5].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1109/jbhi.2015.2413752 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2495854775 |
| best_oa_location.source.issn | 2168-2194, 2168-2208 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2168-2194 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEEE Journal of Biomedical and Health Informatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Biomedical and Health Informatics |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jbhi.2015.2413752 |
| primary_location.id | doi:10.1109/jbhi.2015.2413752 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2495854775 |
| primary_location.source.issn | 2168-2194, 2168-2208 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2168-2194 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Journal of Biomedical and Health Informatics |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Biomedical and Health Informatics |
| primary_location.landing_page_url | https://doi.org/10.1109/jbhi.2015.2413752 |
| publication_date | 2015-03-16 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2058137820, https://openalex.org/W2087636287, https://openalex.org/W2129618485, https://openalex.org/W1483307070, https://openalex.org/W2098613108, https://openalex.org/W6697546144, https://openalex.org/W2152103705, https://openalex.org/W2116779117, https://openalex.org/W2152484798, https://openalex.org/W2159835457, https://openalex.org/W2101979660, https://openalex.org/W4236173595, https://openalex.org/W2055936398, https://openalex.org/W2138915055, https://openalex.org/W2161596343, https://openalex.org/W2106072070, https://openalex.org/W2171191044, https://openalex.org/W1973522832, https://openalex.org/W1988945834, https://openalex.org/W1628268552, https://openalex.org/W2160363272, https://openalex.org/W2009578573, https://openalex.org/W2120078534, https://openalex.org/W2022280818, https://openalex.org/W4205778870, https://openalex.org/W2170897798, https://openalex.org/W1983684992, https://openalex.org/W2113782161, https://openalex.org/W2160337655, https://openalex.org/W6676780147, https://openalex.org/W2143737806, https://openalex.org/W2078413699, https://openalex.org/W2097826706, https://openalex.org/W2170124654, https://openalex.org/W2163969766, https://openalex.org/W2001428189, https://openalex.org/W2016980059, https://openalex.org/W2157308590, https://openalex.org/W2117227428, https://openalex.org/W2085677001, https://openalex.org/W2051799084, https://openalex.org/W2062091836, https://openalex.org/W2029934372, https://openalex.org/W2129234356, https://openalex.org/W1979246170, https://openalex.org/W2163386852, https://openalex.org/W2110009334, https://openalex.org/W1513008779, https://openalex.org/W292716351, https://openalex.org/W2102176429, https://openalex.org/W1492221128, https://openalex.org/W2297468105, https://openalex.org/W1514159701, https://openalex.org/W1608735834, https://openalex.org/W2111787305, https://openalex.org/W1548802052 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 14, 33, 59, 78, 92 |
| abstract_inverted_index.In | 65, 87, 112 |
| abstract_inverted_index.It | 165 |
| abstract_inverted_index.PF | 196 |
| abstract_inverted_index.an | 22 |
| abstract_inverted_index.by | 133 |
| abstract_inverted_index.in | 28, 158 |
| abstract_inverted_index.is | 6, 58 |
| abstract_inverted_index.of | 47, 73, 150, 178, 188, 202, 224 |
| abstract_inverted_index.on | 40, 208 |
| abstract_inverted_index.to | 12, 100, 114, 160, 191 |
| abstract_inverted_index.we | 90 |
| abstract_inverted_index.BCI | 85 |
| abstract_inverted_index.BPF | 123, 145, 184 |
| abstract_inverted_index.EEG | 29, 56, 103, 212 |
| abstract_inverted_index.The | 142, 205 |
| abstract_inverted_index.and | 21, 61, 71, 108, 153, 210 |
| abstract_inverted_index.for | 81 |
| abstract_inverted_index.not | 62 |
| abstract_inverted_index.the | 7, 19, 54, 69, 102, 120, 129, 148, 162, 167, 182, 186, 189, 195, 200, 216, 221 |
| abstract_inverted_index.BCIs | 38 |
| abstract_inverted_index.BPF) | 99 |
| abstract_inverted_index.both | 151 |
| abstract_inverted_index.from | 53, 136 |
| abstract_inverted_index.half | 192 |
| abstract_inverted_index.most | 8 |
| abstract_inverted_index.real | 211 |
| abstract_inverted_index.show | 214 |
| abstract_inverted_index.task | 80 |
| abstract_inverted_index.that | 215 |
| abstract_inverted_index.this | 66, 88 |
| abstract_inverted_index.thus | 198 |
| abstract_inverted_index.with | 138, 194 |
| abstract_inverted_index.(BCI) | 5 |
| abstract_inverted_index.about | 175 |
| abstract_inverted_index.among | 128 |
| abstract_inverted_index.areas | 177 |
| abstract_inverted_index.based | 39, 207 |
| abstract_inverted_index.brain | 2, 20, 42, 75, 104, 131, 168, 225 |
| abstract_inverted_index.build | 13 |
| abstract_inverted_index.curse | 201 |
| abstract_inverted_index.data, | 213 |
| abstract_inverted_index.inner | 74 |
| abstract_inverted_index.noisy | 55 |
| abstract_inverted_index.novel | 93 |
| abstract_inverted_index.order | 159 |
| abstract_inverted_index.prior | 173 |
| abstract_inverted_index.still | 31 |
| abstract_inverted_index.their | 49, 109 |
| abstract_inverted_index.using | 48 |
| abstract_inverted_index.brings | 146 |
| abstract_inverted_index.direct | 15 |
| abstract_inverted_index.filter | 97 |
| abstract_inverted_index.hybrid | 143 |
| abstract_inverted_index.noises | 27 |
| abstract_inverted_index.paper, | 89 |
| abstract_inverted_index.solves | 166 |
| abstract_inverted_index.source | 44, 105, 179 |
| abstract_inverted_index.between | 18 |
| abstract_inverted_index.crucial | 79 |
| abstract_inverted_index.device. | 24 |
| abstract_inverted_index.finding | 68 |
| abstract_inverted_index.improve | 161 |
| abstract_inverted_index.instead | 46 |
| abstract_inverted_index.inverse | 155 |
| abstract_inverted_index.pathway | 17 |
| abstract_inverted_index.problem | 156, 171, 190 |
| abstract_inverted_index.propose | 91 |
| abstract_inverted_index.reduces | 185 |
| abstract_inverted_index.regions | 137 |
| abstract_inverted_index.signals | 45 |
| abstract_inverted_index.sources | 76, 132, 223 |
| abstract_inverted_index.spatial | 106, 118 |
| abstract_inverted_index.studied | 9 |
| abstract_inverted_index.surface | 50 |
| abstract_inverted_index.without | 172 |
| abstract_inverted_index.Bayesian | 154 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.activity | 43, 169 |
| abstract_inverted_index.building | 37 |
| abstract_inverted_index.coherent | 140 |
| abstract_inverted_index.compared | 193 |
| abstract_inverted_index.computer | 3 |
| abstract_inverted_index.context, | 67 |
| abstract_inverted_index.contrast | 113 |
| abstract_inverted_index.dominant | 222 |
| abstract_inverted_index.estimate | 101 |
| abstract_inverted_index.external | 23 |
| abstract_inverted_index.filtered | 41 |
| abstract_inverted_index.filters, | 119 |
| abstract_inverted_index.obtained | 52 |
| abstract_inverted_index.particle | 96 |
| abstract_inverted_index.problem. | 204 |
| abstract_inverted_index.proposed | 217 |
| abstract_inverted_index.recovers | 219 |
| abstract_inverted_index.results, | 206 |
| abstract_inverted_index.signals, | 57 |
| abstract_inverted_index.sources. | 141 |
| abstract_inverted_index.temporal | 126 |
| abstract_inverted_index.together | 147 |
| abstract_inverted_index.Moreover, | 181 |
| abstract_inverted_index.accuracy. | 164 |
| abstract_inverted_index.activity. | 226 |
| abstract_inverted_index.advancing | 82 |
| abstract_inverted_index.considers | 124 |
| abstract_inverted_index.correctly | 220 |
| abstract_inverted_index.developed | 121 |
| abstract_inverted_index.estimated | 130 |
| abstract_inverted_index.framework | 218 |
| abstract_inverted_index.generated | 209 |
| abstract_inverted_index.interface | 4, 11 |
| abstract_inverted_index.locations | 70, 107 |
| abstract_inverted_index.multicore | 94, 122, 144, 183 |
| abstract_inverted_index.promising | 60 |
| abstract_inverted_index.solution, | 197 |
| abstract_inverted_index.waveforms | 72 |
| abstract_inverted_index.(multicore | 98 |
| abstract_inverted_index.activation | 135 |
| abstract_inverted_index.advantages | 149 |
| abstract_inverted_index.algorithms | 157 |
| abstract_inverted_index.beamformer | 95 |
| abstract_inverted_index.challenge. | 35 |
| abstract_inverted_index.constitute | 32 |
| abstract_inverted_index.correlated | 26 |
| abstract_inverted_index.direction. | 64 |
| abstract_inverted_index.estimation | 163 |
| abstract_inverted_index.explicitly | 125 |
| abstract_inverted_index.locations. | 180 |
| abstract_inverted_index.represents | 77 |
| abstract_inverted_index.waveforms. | 111 |
| abstract_inverted_index.(EEG)-based | 1 |
| abstract_inverted_index.alleviating | 199 |
| abstract_inverted_index.approximate | 176 |
| abstract_inverted_index.beamforming | 117 |
| abstract_inverted_index.correlation | 127 |
| abstract_inverted_index.information | 174 |
| abstract_inverted_index.interfering | 139 |
| abstract_inverted_index.noninvasive | 10, 84 |
| abstract_inverted_index.significant | 34 |
| abstract_inverted_index.suppressing | 134 |
| abstract_inverted_index.conventional | 115 |
| abstract_inverted_index.localization | 170 |
| abstract_inverted_index.measurements | 30 |
| abstract_inverted_index.projections, | 51 |
| abstract_inverted_index.source-based | 83 |
| abstract_inverted_index.(single-core) | 116 |
| abstract_inverted_index.communication | 16 |
| abstract_inverted_index.corresponding | 110 |
| abstract_inverted_index.deterministic | 152 |
| abstract_inverted_index.technologies. | 86 |
| abstract_inverted_index.well-explored | 63 |
| abstract_inverted_index.Alternatively, | 36 |
| abstract_inverted_index.dimensionality | 187, 203 |
| abstract_inverted_index.Electroencephalography | 0 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.78341005 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |