A belief propagation algorithm based on track‐before‐detect for tracking low‐observable and manoeuvering targets using multiple sensors Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1049/rsn2.12673
It is notoriously challenging work to track an unknown number of low‐observable manoeuvering targets. In this paper, a sequential Bayesian inference method based on the multiple‐model dynamic model and track‐before‐detect measurement (TBD) model is proposed for tracking low‐observable manoeuvering targets using multiple sensors. The multiple‐model dynamic model is capable to characterise the dynamic behaviour of manoeuvering targets. The TBD measurement model can completely capture an echo signal without any preprocessing, furtherly handling with low‐observable targets. The authors’ proposed method is based on a new multi‐sensor statistical model that allows targets to interact and contribute to more than one data cell for the pixeled image TBD approach. Based on the factor graph representing the multi‐sensor statistical model, the marginal posterior densities are derived by performing the message passing equations of the proposed belief propagation algorithm for target detection and target state estimation. The simulation results validate that the computational complexity of our proposed multi‐sensor BP‐TBD algorithm scales in the number of sensor nodes and demonstrate that its performance is superior among the state‐of‐the‐art multi‐sensor TBD methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1049/rsn2.12673
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/rsn2.12673
- OA Status
- gold
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404874526
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404874526Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1049/rsn2.12673Digital Object Identifier
- Title
-
A belief propagation algorithm based on track‐before‐detect for tracking low‐observable and manoeuvering targets using multiple sensorsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-30Full publication date if available
- Authors
-
Chenghu Cao, Haisheng Huang, Xin Li, Yongbo ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1049/rsn2.12673Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/rsn2.12673Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/rsn2.12673Direct OA link when available
- Concepts
-
Observable, Track (disk drive), Computer science, Tracking (education), Algorithm, Belief propagation, Artificial intelligence, Computer vision, Psychology, Physics, Decoding methods, Quantum mechanics, Operating system, PedagogyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404874526 |
|---|---|
| doi | https://doi.org/10.1049/rsn2.12673 |
| ids.doi | https://doi.org/10.1049/rsn2.12673 |
| ids.openalex | https://openalex.org/W4404874526 |
| fwci | 0.0 |
| type | article |
| title | A belief propagation algorithm based on track‐before‐detect for tracking low‐observable and manoeuvering targets using multiple sensors |
| biblio.issue | 12 |
| biblio.volume | 18 |
| biblio.last_page | 2708 |
| biblio.first_page | 2698 |
| topics[0].id | https://openalex.org/T10711 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Target Tracking and Data Fusion in Sensor Networks |
| topics[1].id | https://openalex.org/T12879 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9945999979972839 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Distributed Sensor Networks and Detection Algorithms |
| topics[2].id | https://openalex.org/T11698 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9810000061988831 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1910 |
| topics[2].subfield.display_name | Oceanography |
| topics[2].display_name | Underwater Acoustics Research |
| funders[0].id | https://openalex.org/F4320327912 |
| funders[0].ror | |
| funders[0].display_name | Higher Education Discipline Innovation Project |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2200 |
| apc_paid.value | 2000 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2200 |
| concepts[0].id | https://openalex.org/C32848918 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6905747652053833 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q845789 |
| concepts[0].display_name | Observable |
| concepts[1].id | https://openalex.org/C89992363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6210223436355591 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5961558 |
| concepts[1].display_name | Track (disk drive) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5782006978988647 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2775936607 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5741623044013977 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q466845 |
| concepts[3].display_name | Tracking (education) |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5243231058120728 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C152948882 |
| concepts[5].level | 3 |
| concepts[5].score | 0.44963404536247253 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q4060686 |
| concepts[5].display_name | Belief propagation |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4169501066207886 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.333202064037323 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C15744967 |
| concepts[8].level | 0 |
| concepts[8].score | 0.12660115957260132 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[8].display_name | Psychology |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.10221582651138306 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C57273362 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q576722 |
| concepts[10].display_name | Decoding methods |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| concepts[12].id | https://openalex.org/C111919701 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[12].display_name | Operating system |
| concepts[13].id | https://openalex.org/C19417346 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[13].display_name | Pedagogy |
| keywords[0].id | https://openalex.org/keywords/observable |
| keywords[0].score | 0.6905747652053833 |
| keywords[0].display_name | Observable |
| keywords[1].id | https://openalex.org/keywords/track |
| keywords[1].score | 0.6210223436355591 |
| keywords[1].display_name | Track (disk drive) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5782006978988647 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/tracking |
| keywords[3].score | 0.5741623044013977 |
| keywords[3].display_name | Tracking (education) |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.5243231058120728 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/belief-propagation |
| keywords[5].score | 0.44963404536247253 |
| keywords[5].display_name | Belief propagation |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.4169501066207886 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.333202064037323 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/psychology |
| keywords[8].score | 0.12660115957260132 |
| keywords[8].display_name | Psychology |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.10221582651138306 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1049/rsn2.12673 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3569471 |
| locations[0].source.issn | 1751-8784, 1751-8792 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1751-8784 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IET Radar Sonar & Navigation |
| locations[0].source.host_organization | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_name | Institution of Engineering and Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311714 |
| locations[0].source.host_organization_lineage_names | Institution of Engineering and Technology |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/rsn2.12673 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IET Radar, Sonar & Navigation |
| locations[0].landing_page_url | https://doi.org/10.1049/rsn2.12673 |
| locations[1].id | pmh:oai:doaj.org/article:f1b087829afb4beabc02acf5f2e637c7 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IET Radar, Sonar & Navigation, Vol 18, Iss 12, Pp 2698-2708 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/f1b087829afb4beabc02acf5f2e637c7 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5082908237 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2244-7247 |
| authorships[0].author.display_name | Chenghu Cao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210136859 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electronic Engineering, Xi'an University Posts and Communications, Xi'an, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I149594827 |
| authorships[0].affiliations[1].raw_affiliation_string | National Lab of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[0].institutions[0].id | https://openalex.org/I149594827 |
| authorships[0].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xidian University |
| authorships[0].institutions[1].id | https://openalex.org/I4210136859 |
| authorships[0].institutions[1].ror | https://ror.org/04jn0td46 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210136859 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Xi’an University of Posts and Telecommunications |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chenghu Cao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Lab of Radar Signal Processing, Xidian University, Xi'an, China, School of Electronic Engineering, Xi'an University Posts and Communications, Xi'an, China |
| authorships[1].author.id | https://openalex.org/A5024647618 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5077-1354 |
| authorships[1].author.display_name | Haisheng Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210102412 |
| authorships[1].affiliations[0].raw_affiliation_string | Xi'an Innovation College of Yan'an University, Xi'an, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210102412 |
| authorships[1].institutions[0].ror | https://ror.org/01dyr7034 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210102412 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yan'an University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Haisheng Huang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Xi'an Innovation College of Yan'an University, Xi'an, China |
| authorships[2].author.id | https://openalex.org/A5083126543 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1571-7269 |
| authorships[2].author.display_name | Xin Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210136859 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Electronic Engineering, Xi'an University Posts and Communications, Xi'an, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210136859 |
| authorships[2].institutions[0].ror | https://ror.org/04jn0td46 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210136859 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Xi’an University of Posts and Telecommunications |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Xin Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Electronic Engineering, Xi'an University Posts and Communications, Xi'an, China |
| authorships[3].author.id | https://openalex.org/A5012445708 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6453-0786 |
| authorships[3].author.display_name | Yongbo Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I149594827 |
| authorships[3].affiliations[0].raw_affiliation_string | National Lab of Radar Signal Processing, Xidian University, Xi'an, China |
| authorships[3].institutions[0].id | https://openalex.org/I149594827 |
| authorships[3].institutions[0].ror | https://ror.org/05s92vm98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I149594827 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Xidian University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yongbo Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Lab of Radar Signal Processing, Xidian University, Xi'an, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/rsn2.12673 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A belief propagation algorithm based on track‐before‐detect for tracking low‐observable and manoeuvering targets using multiple sensors |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10711 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Target Tracking and Data Fusion in Sensor Networks |
| related_works | https://openalex.org/W1994680671, https://openalex.org/W2000283393, https://openalex.org/W2002320543, https://openalex.org/W2061947244, https://openalex.org/W2150232912, https://openalex.org/W2054940838, https://openalex.org/W3106170641, https://openalex.org/W4321855183, https://openalex.org/W2952513607, https://openalex.org/W2158788032 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1049/rsn2.12673 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3569471 |
| best_oa_location.source.issn | 1751-8784, 1751-8792 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1751-8784 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IET Radar Sonar & Navigation |
| best_oa_location.source.host_organization | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_name | Institution of Engineering and Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| best_oa_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/rsn2.12673 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IET Radar, Sonar & Navigation |
| best_oa_location.landing_page_url | https://doi.org/10.1049/rsn2.12673 |
| primary_location.id | doi:10.1049/rsn2.12673 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3569471 |
| primary_location.source.issn | 1751-8784, 1751-8792 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1751-8784 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IET Radar Sonar & Navigation |
| primary_location.source.host_organization | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_name | Institution of Engineering and Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311714 |
| primary_location.source.host_organization_lineage_names | Institution of Engineering and Technology |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1049/rsn2.12673 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IET Radar, Sonar & Navigation |
| primary_location.landing_page_url | https://doi.org/10.1049/rsn2.12673 |
| publication_date | 2024-11-30 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3117447933, https://openalex.org/W3197122187, https://openalex.org/W2979653692, https://openalex.org/W4310748646, https://openalex.org/W2511568459, https://openalex.org/W2945747947, https://openalex.org/W2154353836, https://openalex.org/W3015395304, https://openalex.org/W1909771825, https://openalex.org/W2993465864, https://openalex.org/W2901168609, https://openalex.org/W2761761724, https://openalex.org/W2762588164, https://openalex.org/W2789551723, https://openalex.org/W4285293375, https://openalex.org/W3090449432, https://openalex.org/W2998168058, https://openalex.org/W3169502301, https://openalex.org/W4321788371, https://openalex.org/W2973169463, https://openalex.org/W3008383159, https://openalex.org/W4225691050, https://openalex.org/W4377000497, https://openalex.org/W3126344916, https://openalex.org/W2123378338, https://openalex.org/W1845278593, https://openalex.org/W1965106715, https://openalex.org/W2764024189, https://openalex.org/W1745301770, https://openalex.org/W3173521566, https://openalex.org/W4293660975, https://openalex.org/W4308866386, https://openalex.org/W4390830058, https://openalex.org/W3210977953, https://openalex.org/W4384916595 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 18, 83 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.It | 1 |
| abstract_inverted_index.an | 8, 65 |
| abstract_inverted_index.by | 123 |
| abstract_inverted_index.in | 157 |
| abstract_inverted_index.is | 2, 34, 48, 80, 168 |
| abstract_inverted_index.of | 11, 55, 129, 150, 160 |
| abstract_inverted_index.on | 24, 82, 108 |
| abstract_inverted_index.to | 6, 50, 91, 95 |
| abstract_inverted_index.TBD | 59, 105, 174 |
| abstract_inverted_index.The | 44, 58, 76, 142 |
| abstract_inverted_index.and | 29, 93, 138, 163 |
| abstract_inverted_index.any | 69 |
| abstract_inverted_index.are | 121 |
| abstract_inverted_index.can | 62 |
| abstract_inverted_index.for | 36, 101, 135 |
| abstract_inverted_index.its | 166 |
| abstract_inverted_index.new | 84 |
| abstract_inverted_index.one | 98 |
| abstract_inverted_index.our | 151 |
| abstract_inverted_index.the | 25, 52, 102, 109, 113, 117, 125, 130, 147, 158, 171 |
| abstract_inverted_index.cell | 100 |
| abstract_inverted_index.data | 99 |
| abstract_inverted_index.echo | 66 |
| abstract_inverted_index.more | 96 |
| abstract_inverted_index.than | 97 |
| abstract_inverted_index.that | 88, 146, 165 |
| abstract_inverted_index.this | 16 |
| abstract_inverted_index.with | 73 |
| abstract_inverted_index.work | 5 |
| abstract_inverted_index.(TBD) | 32 |
| abstract_inverted_index.Based | 107 |
| abstract_inverted_index.among | 170 |
| abstract_inverted_index.based | 23, 81 |
| abstract_inverted_index.graph | 111 |
| abstract_inverted_index.image | 104 |
| abstract_inverted_index.model | 28, 33, 47, 61, 87 |
| abstract_inverted_index.nodes | 162 |
| abstract_inverted_index.state | 140 |
| abstract_inverted_index.track | 7 |
| abstract_inverted_index.using | 41 |
| abstract_inverted_index.allows | 89 |
| abstract_inverted_index.belief | 132 |
| abstract_inverted_index.factor | 110 |
| abstract_inverted_index.method | 22, 79 |
| abstract_inverted_index.model, | 116 |
| abstract_inverted_index.number | 10, 159 |
| abstract_inverted_index.paper, | 17 |
| abstract_inverted_index.scales | 156 |
| abstract_inverted_index.sensor | 161 |
| abstract_inverted_index.signal | 67 |
| abstract_inverted_index.target | 136, 139 |
| abstract_inverted_index.capable | 49 |
| abstract_inverted_index.capture | 64 |
| abstract_inverted_index.derived | 122 |
| abstract_inverted_index.dynamic | 27, 46, 53 |
| abstract_inverted_index.message | 126 |
| abstract_inverted_index.passing | 127 |
| abstract_inverted_index.pixeled | 103 |
| abstract_inverted_index.results | 144 |
| abstract_inverted_index.targets | 40, 90 |
| abstract_inverted_index.unknown | 9 |
| abstract_inverted_index.without | 68 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.BP‐TBD | 154 |
| abstract_inverted_index.Bayesian | 20 |
| abstract_inverted_index.handling | 72 |
| abstract_inverted_index.interact | 92 |
| abstract_inverted_index.marginal | 118 |
| abstract_inverted_index.methods. | 175 |
| abstract_inverted_index.multiple | 42 |
| abstract_inverted_index.proposed | 35, 78, 131, 152 |
| abstract_inverted_index.sensors. | 43 |
| abstract_inverted_index.superior | 169 |
| abstract_inverted_index.targets. | 14, 57, 75 |
| abstract_inverted_index.tracking | 37 |
| abstract_inverted_index.validate | 145 |
| abstract_inverted_index.algorithm | 134, 155 |
| abstract_inverted_index.approach. | 106 |
| abstract_inverted_index.behaviour | 54 |
| abstract_inverted_index.densities | 120 |
| abstract_inverted_index.detection | 137 |
| abstract_inverted_index.equations | 128 |
| abstract_inverted_index.furtherly | 71 |
| abstract_inverted_index.inference | 21 |
| abstract_inverted_index.posterior | 119 |
| abstract_inverted_index.authors’ | 77 |
| abstract_inverted_index.completely | 63 |
| abstract_inverted_index.complexity | 149 |
| abstract_inverted_index.contribute | 94 |
| abstract_inverted_index.performing | 124 |
| abstract_inverted_index.sequential | 19 |
| abstract_inverted_index.simulation | 143 |
| abstract_inverted_index.challenging | 4 |
| abstract_inverted_index.demonstrate | 164 |
| abstract_inverted_index.estimation. | 141 |
| abstract_inverted_index.measurement | 31, 60 |
| abstract_inverted_index.notoriously | 3 |
| abstract_inverted_index.performance | 167 |
| abstract_inverted_index.propagation | 133 |
| abstract_inverted_index.statistical | 86, 115 |
| abstract_inverted_index.characterise | 51 |
| abstract_inverted_index.manoeuvering | 13, 39, 56 |
| abstract_inverted_index.representing | 112 |
| abstract_inverted_index.computational | 148 |
| abstract_inverted_index.multi‐sensor | 85, 114, 153, 173 |
| abstract_inverted_index.preprocessing, | 70 |
| abstract_inverted_index.low‐observable | 12, 38, 74 |
| abstract_inverted_index.multiple‐model | 26, 45 |
| abstract_inverted_index.state‐of‐the‐art | 172 |
| abstract_inverted_index.track‐before‐detect | 30 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5024647618 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I4210102412 |
| citation_normalized_percentile.value | 0.24277224 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |