A better-than-1.6-approximation for prize-collecting TSP Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s10107-025-02221-4
Prize-Collecting TSP is a variant of the traveling salesperson problem where one may drop vertices from the tour at the cost of vertex-dependent penalties. The quality of a solution is then measured by adding the length of the tour and the sum of all penalties of vertices that are not visited. We present a polynomial-time approximation algorithm with an approximation guarantee slightly below 1.6, where the guarantee is with respect to the natural linear programming relaxation of the problem. This improves upon the previous best-known approximation ratio of 1.774. Our approach is based on a known decomposition for solutions of this linear relaxation into rooted trees. Our algorithm takes a tree from this decomposition and then performs a pruning step before doing parity correction on the remainder. Using a simple analysis, we bound the approximation guarantee of the proposed algorithm by $$(1+\sqrt{5})\big /2 \approx 1.618$$ , the golden ratio. With some additional technical care we further improve the approximation guarantee to 1.599. Furthermore, we show that for the path version of Prize-Collecting TSP (known as Prize-Collecting Stroll) our approach yields an approximation guarantee of 1.6662, improving upon the previous best-known guarantee of 1.926.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s10107-025-02221-4
- https://link.springer.com/content/pdf/10.1007/s10107-025-02221-4.pdf
- OA Status
- hybrid
- References
- 39
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410291403
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410291403Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s10107-025-02221-4Digital Object Identifier
- Title
-
A better-than-1.6-approximation for prize-collecting TSPWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-12Full publication date if available
- Authors
-
Jannis Blauth, Nathan Klein, Martin NägeleList of authors in order
- Landing page
-
https://doi.org/10.1007/s10107-025-02221-4Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s10107-025-02221-4.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s10107-025-02221-4.pdfDirect OA link when available
- Concepts
-
Mathematics, Numerical analysis, Approximation algorithm, Numerical approximation, Combinatorics, Mathematical optimization, Applied mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
39Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410291403 |
|---|---|
| doi | https://doi.org/10.1007/s10107-025-02221-4 |
| ids.doi | https://doi.org/10.1007/s10107-025-02221-4 |
| ids.openalex | https://openalex.org/W4410291403 |
| fwci | 0.0 |
| type | article |
| title | A better-than-1.6-approximation for prize-collecting TSP |
| awards[0].id | https://openalex.org/G2405319508 |
| awards[0].funder_id | https://openalex.org/F4320320924 |
| awards[0].display_name | |
| awards[0].funder_award_id | P500PT_206742 |
| awards[0].funder_display_name | Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung |
| awards[1].id | https://openalex.org/G6150757402 |
| awards[1].funder_id | https://openalex.org/F4320338279 |
| awards[1].display_name | |
| awards[1].funder_award_id | FA9550-20-1-0212 |
| awards[1].funder_display_name | Air Force Office of Scientific Research |
| awards[2].id | https://openalex.org/G5512240048 |
| awards[2].funder_id | https://openalex.org/F4320320879 |
| awards[2].display_name | |
| awards[2].funder_award_id | EXZ-2047/1 – 390685813 |
| awards[2].funder_display_name | Deutsche Forschungsgemeinschaft |
| awards[3].id | https://openalex.org/G3427691308 |
| awards[3].funder_id | https://openalex.org/F4320306076 |
| awards[3].display_name | |
| awards[3].funder_award_id | CCF-1813135 |
| awards[3].funder_display_name | National Science Foundation |
| awards[4].id | https://openalex.org/G8497923736 |
| awards[4].funder_id | https://openalex.org/F4320306076 |
| awards[4].display_name | |
| awards[4].funder_award_id | DGE-1762114 |
| awards[4].funder_display_name | National Science Foundation |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12288 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Optimization and Search Problems |
| topics[1].id | https://openalex.org/T10586 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Robotic Path Planning Algorithms |
| topics[2].id | https://openalex.org/T10567 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9979000091552734 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Vehicle Routing Optimization Methods |
| funders[0].id | https://openalex.org/F4320306076 |
| funders[0].ror | https://ror.org/021nxhr62 |
| funders[0].display_name | National Science Foundation |
| funders[1].id | https://openalex.org/F4320320879 |
| funders[1].ror | https://ror.org/018mejw64 |
| funders[1].display_name | Deutsche Forschungsgemeinschaft |
| funders[2].id | https://openalex.org/F4320320924 |
| funders[2].ror | https://ror.org/00yjd3n13 |
| funders[2].display_name | Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung |
| funders[3].id | https://openalex.org/F4320338279 |
| funders[3].ror | https://ror.org/011e9bt93 |
| funders[3].display_name | Air Force Office of Scientific Research |
| is_xpac | False |
| apc_list.value | 2190 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2890 |
| apc_paid.value | 2190 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2890 |
| concepts[0].id | https://openalex.org/C33923547 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6843045949935913 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[0].display_name | Mathematics |
| concepts[1].id | https://openalex.org/C48753275 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5285314917564392 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11216 |
| concepts[1].display_name | Numerical analysis |
| concepts[2].id | https://openalex.org/C148764684 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4650036096572876 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q621751 |
| concepts[2].display_name | Approximation algorithm |
| concepts[3].id | https://openalex.org/C2986878899 |
| concepts[3].level | 3 |
| concepts[3].score | 0.4304547905921936 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11216 |
| concepts[3].display_name | Numerical approximation |
| concepts[4].id | https://openalex.org/C114614502 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3593922555446625 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[4].display_name | Combinatorics |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3393641710281372 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C28826006 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3372911810874939 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[6].display_name | Applied mathematics |
| concepts[7].id | https://openalex.org/C134306372 |
| concepts[7].level | 1 |
| concepts[7].score | 0.1313476264476776 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[7].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/mathematics |
| keywords[0].score | 0.6843045949935913 |
| keywords[0].display_name | Mathematics |
| keywords[1].id | https://openalex.org/keywords/numerical-analysis |
| keywords[1].score | 0.5285314917564392 |
| keywords[1].display_name | Numerical analysis |
| keywords[2].id | https://openalex.org/keywords/approximation-algorithm |
| keywords[2].score | 0.4650036096572876 |
| keywords[2].display_name | Approximation algorithm |
| keywords[3].id | https://openalex.org/keywords/numerical-approximation |
| keywords[3].score | 0.4304547905921936 |
| keywords[3].display_name | Numerical approximation |
| keywords[4].id | https://openalex.org/keywords/combinatorics |
| keywords[4].score | 0.3593922555446625 |
| keywords[4].display_name | Combinatorics |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.3393641710281372 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/applied-mathematics |
| keywords[6].score | 0.3372911810874939 |
| keywords[6].display_name | Applied mathematics |
| keywords[7].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[7].score | 0.1313476264476776 |
| keywords[7].display_name | Mathematical analysis |
| language | en |
| locations[0].id | doi:10.1007/s10107-025-02221-4 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S193920097 |
| locations[0].source.issn | 0025-5610, 1436-4646 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0025-5610 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Mathematical Programming |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s10107-025-02221-4.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Mathematical Programming |
| locations[0].landing_page_url | https://doi.org/10.1007/s10107-025-02221-4 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5031102399 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5181-802X |
| authorships[0].author.display_name | Jannis Blauth |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jannis Blauth |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014157604 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-4052-5864 |
| authorships[1].author.display_name | Nathan Klein |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Nathan Klein |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5027137195 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3059-6402 |
| authorships[2].author.display_name | Martin Nägele |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Martin Nägele |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s10107-025-02221-4.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A better-than-1.6-approximation for prize-collecting TSP |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12288 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Optimization and Search Problems |
| related_works | https://openalex.org/W1997932535, https://openalex.org/W2010049312, https://openalex.org/W1970786191, https://openalex.org/W4402809589, https://openalex.org/W2963771406, https://openalex.org/W2152819099, https://openalex.org/W2023399328, https://openalex.org/W2162623007, https://openalex.org/W2061012261, https://openalex.org/W2009695399 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s10107-025-02221-4 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S193920097 |
| best_oa_location.source.issn | 0025-5610, 1436-4646 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0025-5610 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Mathematical Programming |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10107-025-02221-4.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Mathematical Programming |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s10107-025-02221-4 |
| primary_location.id | doi:10.1007/s10107-025-02221-4 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S193920097 |
| primary_location.source.issn | 0025-5610, 1436-4646 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0025-5610 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Mathematical Programming |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s10107-025-02221-4.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Mathematical Programming |
| primary_location.landing_page_url | https://doi.org/10.1007/s10107-025-02221-4 |
| publication_date | 2025-05-12 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4390575860, https://openalex.org/W4399521223, https://openalex.org/W2240814884, https://openalex.org/W2123087902, https://openalex.org/W4396882112, https://openalex.org/W4300273322, https://openalex.org/W1760833224, https://openalex.org/W1986056047, https://openalex.org/W1980942794, https://openalex.org/W4237504351, https://openalex.org/W2044119054, https://openalex.org/W4398172548, https://openalex.org/W4376639517, https://openalex.org/W2113939799, https://openalex.org/W2115556222, https://openalex.org/W2117226423, https://openalex.org/W3212127876, https://openalex.org/W2064284095, https://openalex.org/W2017501272, https://openalex.org/W2038190710, https://openalex.org/W2001139415, https://openalex.org/W4249586771, https://openalex.org/W3167350281, https://openalex.org/W4377200004, https://openalex.org/W2962875727, https://openalex.org/W2643346538, https://openalex.org/W1986334784, https://openalex.org/W1786780942, https://openalex.org/W2148319529, https://openalex.org/W1483203801, https://openalex.org/W2117443767, https://openalex.org/W2994566040, https://openalex.org/W4311156467, https://openalex.org/W2250014226, https://openalex.org/W2964044445, https://openalex.org/W3205213369, https://openalex.org/W3014100174, https://openalex.org/W3046251504, https://openalex.org/W3099932027 |
| referenced_works_count | 39 |
| abstract_inverted_index., | 164 |
| abstract_inverted_index.a | 4, 28, 54, 95, 110, 118, 129 |
| abstract_inverted_index./2 | 143 |
| abstract_inverted_index.We | 52 |
| abstract_inverted_index.an | 59, 199 |
| abstract_inverted_index.as | 193 |
| abstract_inverted_index.at | 19 |
| abstract_inverted_index.by | 33, 141 |
| abstract_inverted_index.is | 3, 30, 68, 92 |
| abstract_inverted_index.of | 6, 22, 27, 37, 43, 46, 77, 88, 100, 137, 189, 202, 210 |
| abstract_inverted_index.on | 94, 125 |
| abstract_inverted_index.to | 71, 179 |
| abstract_inverted_index.we | 132, 173, 182 |
| abstract_inverted_index.Our | 90, 107 |
| abstract_inverted_index.TSP | 2, 191 |
| abstract_inverted_index.The | 25 |
| abstract_inverted_index.all | 44 |
| abstract_inverted_index.and | 40, 115 |
| abstract_inverted_index.are | 49 |
| abstract_inverted_index.for | 98, 185 |
| abstract_inverted_index.may | 13 |
| abstract_inverted_index.not | 50 |
| abstract_inverted_index.one | 12 |
| abstract_inverted_index.our | 196 |
| abstract_inverted_index.sum | 42 |
| abstract_inverted_index.the | 7, 17, 20, 35, 38, 41, 66, 72, 78, 83, 126, 134, 138, 165, 176, 186, 206 |
| abstract_inverted_index.1.6, | 64 |
| abstract_inverted_index.This | 80 |
| abstract_inverted_index.With | 168 |
| abstract_inverted_index.care | 172 |
| abstract_inverted_index.cost | 21 |
| abstract_inverted_index.drop | 14 |
| abstract_inverted_index.from | 16, 112 |
| abstract_inverted_index.into | 104 |
| abstract_inverted_index.path | 187 |
| abstract_inverted_index.show | 183 |
| abstract_inverted_index.some | 169 |
| abstract_inverted_index.step | 120 |
| abstract_inverted_index.that | 48, 184 |
| abstract_inverted_index.then | 31, 116 |
| abstract_inverted_index.this | 101, 113 |
| abstract_inverted_index.tour | 18, 39 |
| abstract_inverted_index.tree | 111 |
| abstract_inverted_index.upon | 82, 205 |
| abstract_inverted_index.with | 58, 69 |
| abstract_inverted_index.Using | 128 |
| abstract_inverted_index.based | 93 |
| abstract_inverted_index.below | 63 |
| abstract_inverted_index.bound | 133 |
| abstract_inverted_index.doing | 122 |
| abstract_inverted_index.known | 96 |
| abstract_inverted_index.ratio | 87 |
| abstract_inverted_index.takes | 109 |
| abstract_inverted_index.where | 11, 65 |
| abstract_inverted_index.(known | 192 |
| abstract_inverted_index.1.599. | 180 |
| abstract_inverted_index.1.774. | 89 |
| abstract_inverted_index.1.926. | 211 |
| abstract_inverted_index.adding | 34 |
| abstract_inverted_index.before | 121 |
| abstract_inverted_index.golden | 166 |
| abstract_inverted_index.length | 36 |
| abstract_inverted_index.linear | 74, 102 |
| abstract_inverted_index.parity | 123 |
| abstract_inverted_index.ratio. | 167 |
| abstract_inverted_index.rooted | 105 |
| abstract_inverted_index.simple | 130 |
| abstract_inverted_index.trees. | 106 |
| abstract_inverted_index.yields | 198 |
| abstract_inverted_index.1.618$$ | 145 |
| abstract_inverted_index.1.6662, | 203 |
| abstract_inverted_index.Stroll) | 195 |
| abstract_inverted_index.\approx | 144 |
| abstract_inverted_index.further | 174 |
| abstract_inverted_index.improve | 175 |
| abstract_inverted_index.natural | 73 |
| abstract_inverted_index.present | 53 |
| abstract_inverted_index.problem | 10 |
| abstract_inverted_index.pruning | 119 |
| abstract_inverted_index.quality | 26 |
| abstract_inverted_index.respect | 70 |
| abstract_inverted_index.variant | 5 |
| abstract_inverted_index.version | 188 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.approach | 91, 197 |
| abstract_inverted_index.improves | 81 |
| abstract_inverted_index.measured | 32 |
| abstract_inverted_index.performs | 117 |
| abstract_inverted_index.previous | 84, 207 |
| abstract_inverted_index.problem. | 79 |
| abstract_inverted_index.proposed | 139 |
| abstract_inverted_index.slightly | 62 |
| abstract_inverted_index.solution | 29 |
| abstract_inverted_index.vertices | 15, 47 |
| abstract_inverted_index.visited. | 51 |
| abstract_inverted_index.<mml:math | 146 |
| abstract_inverted_index.algorithm | 57, 108, 140 |
| abstract_inverted_index.analysis, | 131 |
| abstract_inverted_index.guarantee | 61, 67, 136, 178, 201, 209 |
| abstract_inverted_index.improving | 204 |
| abstract_inverted_index.penalties | 45 |
| abstract_inverted_index.solutions | 99 |
| abstract_inverted_index.technical | 171 |
| abstract_inverted_index.traveling | 8 |
| abstract_inverted_index.<mml:mrow> | 148, 156 |
| abstract_inverted_index.additional | 170 |
| abstract_inverted_index.best-known | 85, 208 |
| abstract_inverted_index.correction | 124 |
| abstract_inverted_index.penalties. | 24 |
| abstract_inverted_index.relaxation | 76, 103 |
| abstract_inverted_index.remainder. | 127 |
| abstract_inverted_index.</mml:math> | 163 |
| abstract_inverted_index.</mml:mrow> | 158, 162 |
| abstract_inverted_index.<mml:msqrt> | 152 |
| abstract_inverted_index.programming | 75 |
| abstract_inverted_index.salesperson | 9 |
| abstract_inverted_index.</mml:msqrt> | 154 |
| abstract_inverted_index.Furthermore, | 181 |
| abstract_inverted_index.approximation | 56, 60, 86, 135, 177, 200 |
| abstract_inverted_index.decomposition | 97, 114 |
| abstract_inverted_index.polynomial-time | 55 |
| abstract_inverted_index.Prize-Collecting | 1, 190, 194 |
| abstract_inverted_index.vertex-dependent | 23 |
| abstract_inverted_index.$$(1+\sqrt{5})\big | 142 |
| abstract_inverted_index.<mml:mn>1</mml:mn> | 150 |
| abstract_inverted_index.<mml:mn>2</mml:mn> | 159 |
| abstract_inverted_index.<mml:mn>5</mml:mn> | 153 |
| abstract_inverted_index.<mml:mo>(</mml:mo> | 149 |
| abstract_inverted_index.<mml:mo>)</mml:mo> | 155 |
| abstract_inverted_index.<mml:mo>+</mml:mo> | 151 |
| abstract_inverted_index.<mml:mo>/</mml:mo> | 157 |
| abstract_inverted_index.<mml:mo>≈</mml:mo> | 160 |
| abstract_inverted_index.<mml:mn>1.618</mml:mn> | 161 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML"> | 147 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.17716558 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |