A Case For Intra-rack Resource Disaggregation in HPC Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1145/3514245
The expected halt of traditional technology scaling is motivating increased heterogeneity in high-performance computing (HPC) systems with the emergence of numerous specialized accelerators. As heterogeneity increases, so does the risk of underutilizing expensive hardware resources if we preserve today’s rigid node configuration and reservation strategies. This has sparked interest in resource disaggregation to enable finer-grain allocation of hardware resources to applications. However, there is currently no data-driven study of what range of disaggregation is appropriate in HPC. To that end, we perform a detailed analysis of key metrics sampled in NERSC’s Cori, a production HPC system that executes a diverse open-science HPC workload. In addition, we profile a variety of deep-learning applications to represent an emerging workload. We show that for a rack (cabinet) configuration and applications similar to Cori, a central processing unit with intra-rack disaggregation has a 99.5% probability to find all resources it requires inside its rack. In addition, ideal intra-rack resource disaggregation in Cori could reduce memory and NIC resources by 5.36% to 69.01% and still satisfy the worst-case average rack utilization.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3514245
- https://dl.acm.org/doi/pdf/10.1145/3514245
- OA Status
- diamond
- Cited By
- 36
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4210363011
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4210363011Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3514245Digital Object Identifier
- Title
-
A Case For Intra-rack Resource Disaggregation in HPCWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-02Full publication date if available
- Authors
-
George Michelogiannakis, Benjamin Klenk, Brandon Cook, Min Yee Teh, Madeleine Glick, Larry Dennison, Keren Bergman, John ShalfList of authors in order
- Landing page
-
https://doi.org/10.1145/3514245Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3514245Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3514245Direct OA link when available
- Concepts
-
Rack, Computer science, Workload, Reservation, Supercomputer, Resource (disambiguation), Variety (cybernetics), Distributed computing, Operating system, Artificial intelligence, Computer network, Law, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
36Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10, 2024: 12, 2023: 10, 2022: 4Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4210363011 |
|---|---|
| doi | https://doi.org/10.1145/3514245 |
| ids.doi | https://doi.org/10.1145/3514245 |
| ids.openalex | https://openalex.org/W4210363011 |
| fwci | 13.67967998 |
| type | article |
| title | A Case For Intra-rack Resource Disaggregation in HPC |
| biblio.issue | 2 |
| biblio.volume | 19 |
| biblio.last_page | 26 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10101 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Cloud Computing and Resource Management |
| topics[1].id | https://openalex.org/T10715 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Distributed and Parallel Computing Systems |
| topics[2].id | https://openalex.org/T11181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9988999962806702 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Advanced Data Storage Technologies |
| funders[0].id | https://openalex.org/F4320317220 |
| funders[0].ror | https://ror.org/05v3mvq14 |
| funders[0].display_name | National Energy Research Scientific Computing Center |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776843527 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9114214181900024 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1351382 |
| concepts[0].display_name | Rack |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8335561752319336 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2778476105 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6180989742279053 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q628539 |
| concepts[2].display_name | Workload |
| concepts[3].id | https://openalex.org/C2777632111 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49589070677757263 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1937518 |
| concepts[3].display_name | Reservation |
| concepts[4].id | https://openalex.org/C83283714 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4504939615726471 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q121117 |
| concepts[4].display_name | Supercomputer |
| concepts[5].id | https://openalex.org/C206345919 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4431132376194 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q20380951 |
| concepts[5].display_name | Resource (disambiguation) |
| concepts[6].id | https://openalex.org/C136197465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4398570656776428 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[6].display_name | Variety (cybernetics) |
| concepts[7].id | https://openalex.org/C120314980 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4379667043685913 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q180634 |
| concepts[7].display_name | Distributed computing |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.28665730357170105 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15756893157958984 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C31258907 |
| concepts[10].level | 1 |
| concepts[10].score | 0.12668722867965698 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[10].display_name | Computer network |
| concepts[11].id | https://openalex.org/C199539241 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[11].display_name | Law |
| concepts[12].id | https://openalex.org/C17744445 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[12].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/rack |
| keywords[0].score | 0.9114214181900024 |
| keywords[0].display_name | Rack |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8335561752319336 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/workload |
| keywords[2].score | 0.6180989742279053 |
| keywords[2].display_name | Workload |
| keywords[3].id | https://openalex.org/keywords/reservation |
| keywords[3].score | 0.49589070677757263 |
| keywords[3].display_name | Reservation |
| keywords[4].id | https://openalex.org/keywords/supercomputer |
| keywords[4].score | 0.4504939615726471 |
| keywords[4].display_name | Supercomputer |
| keywords[5].id | https://openalex.org/keywords/resource |
| keywords[5].score | 0.4431132376194 |
| keywords[5].display_name | Resource (disambiguation) |
| keywords[6].id | https://openalex.org/keywords/variety |
| keywords[6].score | 0.4398570656776428 |
| keywords[6].display_name | Variety (cybernetics) |
| keywords[7].id | https://openalex.org/keywords/distributed-computing |
| keywords[7].score | 0.4379667043685913 |
| keywords[7].display_name | Distributed computing |
| keywords[8].id | https://openalex.org/keywords/operating-system |
| keywords[8].score | 0.28665730357170105 |
| keywords[8].display_name | Operating system |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.15756893157958984 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/computer-network |
| keywords[10].score | 0.12668722867965698 |
| keywords[10].display_name | Computer network |
| language | en |
| locations[0].id | doi:10.1145/3514245 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S26056741 |
| locations[0].source.issn | 1544-3566, 1544-3973 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1544-3566 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACM Transactions on Architecture and Code Optimization |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3514245 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACM Transactions on Architecture and Code Optimization |
| locations[0].landing_page_url | https://doi.org/10.1145/3514245 |
| locations[1].id | pmh:oai:escholarship.org:ark:/13030/qt73x617x8 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ACM Transactions on Architecture and Code Optimization, vol 19, iss 2 |
| locations[1].landing_page_url | https://escholarship.org/uc/item/73x617x8 |
| locations[2].id | pmh:oai:osti.gov:1878112 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/1878112 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5038069067 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3743-6054 |
| authorships[0].author.display_name | George Michelogiannakis |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[0].affiliations[0].raw_affiliation_string | Lawrence Berkeley National Laboratory, Berkeley, CA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I148283060 |
| authorships[0].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | George Michelogiannakis |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Lawrence Berkeley National Laboratory, Berkeley, CA, USA |
| authorships[1].author.id | https://openalex.org/A5049729482 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7657-3049 |
| authorships[1].author.display_name | Benjamin Klenk |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210127875 |
| authorships[1].affiliations[0].raw_affiliation_string | NVIDIA, Santa Clara, CA, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210127875 |
| authorships[1].institutions[0].ror | https://ror.org/03jdj4y14 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210127875 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Nvidia (United States) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Benjamin Klenk |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | NVIDIA, Santa Clara, CA, USA |
| authorships[2].author.id | https://openalex.org/A5000643884 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4203-4079 |
| authorships[2].author.display_name | Brandon Cook |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[2].affiliations[0].raw_affiliation_string | Lawrence Berkeley National Laboratory, Berkeley, CA, USA |
| authorships[2].institutions[0].id | https://openalex.org/I148283060 |
| authorships[2].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Brandon Cook |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Lawrence Berkeley National Laboratory, Berkeley, CA, USA |
| authorships[3].author.id | https://openalex.org/A5022829828 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5656-9288 |
| authorships[3].author.display_name | Min Yee Teh |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[3].affiliations[0].raw_affiliation_string | Columbia University, New York City, NY, USA |
| authorships[3].institutions[0].id | https://openalex.org/I78577930 |
| authorships[3].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Columbia University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Min Yee Teh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Columbia University, New York City, NY, USA |
| authorships[4].author.id | https://openalex.org/A5049804700 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3042-2039 |
| authorships[4].author.display_name | Madeleine Glick |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[4].affiliations[0].raw_affiliation_string | Columbia University, New York City, NY, USA |
| authorships[4].institutions[0].id | https://openalex.org/I78577930 |
| authorships[4].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Columbia University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Madeleine Glick |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Columbia University, New York City, NY, USA |
| authorships[5].author.id | https://openalex.org/A5011612779 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5533-1083 |
| authorships[5].author.display_name | Larry Dennison |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210127875 |
| authorships[5].affiliations[0].raw_affiliation_string | NVIDIA, Santa Clara, CA, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210127875 |
| authorships[5].institutions[0].ror | https://ror.org/03jdj4y14 |
| authorships[5].institutions[0].type | company |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210127875 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Nvidia (United States) |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Larry Dennison |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | NVIDIA, Santa Clara, CA, USA |
| authorships[6].author.id | https://openalex.org/A5081695392 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8580-1728 |
| authorships[6].author.display_name | Keren Bergman |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[6].affiliations[0].raw_affiliation_string | Columbia University, New York City, NY, USA |
| authorships[6].institutions[0].id | https://openalex.org/I78577930 |
| authorships[6].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Columbia University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Keren Bergman |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Columbia University, New York City, NY, USA |
| authorships[7].author.id | https://openalex.org/A5010873686 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0608-3690 |
| authorships[7].author.display_name | John Shalf |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I148283060 |
| authorships[7].affiliations[0].raw_affiliation_string | Lawrence Berkeley National Laboratory, Berkeley, CA, USA |
| authorships[7].institutions[0].id | https://openalex.org/I148283060 |
| authorships[7].institutions[0].ror | https://ror.org/02jbv0t02 |
| authorships[7].institutions[0].type | facility |
| authorships[7].institutions[0].lineage | https://openalex.org/I1330989302, https://openalex.org/I148283060, https://openalex.org/I39565521 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Lawrence Berkeley National Laboratory |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | John Shalf |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Lawrence Berkeley National Laboratory, Berkeley, CA, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3514245 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Case For Intra-rack Resource Disaggregation in HPC |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10101 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Cloud Computing and Resource Management |
| related_works | https://openalex.org/W2377223570, https://openalex.org/W2360126784, https://openalex.org/W2358514374, https://openalex.org/W2357743194, https://openalex.org/W3149027463, https://openalex.org/W2033820166, https://openalex.org/W2958580061, https://openalex.org/W2354821064, https://openalex.org/W2808464283, https://openalex.org/W3193232330 |
| cited_by_count | 36 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 10 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1145/3514245 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S26056741 |
| best_oa_location.source.issn | 1544-3566, 1544-3973 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1544-3566 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACM Transactions on Architecture and Code Optimization |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3514245 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACM Transactions on Architecture and Code Optimization |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3514245 |
| primary_location.id | doi:10.1145/3514245 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S26056741 |
| primary_location.source.issn | 1544-3566, 1544-3973 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1544-3566 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACM Transactions on Architecture and Code Optimization |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3514245 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACM Transactions on Architecture and Code Optimization |
| primary_location.landing_page_url | https://doi.org/10.1145/3514245 |
| publication_date | 2022-02-02 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2038924755, https://openalex.org/W2792667249, https://openalex.org/W3149220685, https://openalex.org/W2765678501, https://openalex.org/W2979935562, https://openalex.org/W2744934275, https://openalex.org/W4254879828, https://openalex.org/W2201109483, https://openalex.org/W2996556490, https://openalex.org/W2807234289, https://openalex.org/W2901525004, https://openalex.org/W3130554079, https://openalex.org/W2752637513, https://openalex.org/W2754016293, https://openalex.org/W2735130281, https://openalex.org/W2949756009, https://openalex.org/W3094075828, https://openalex.org/W3014969608, https://openalex.org/W2970969564, https://openalex.org/W2953169926, https://openalex.org/W2194775991, https://openalex.org/W2748600494, https://openalex.org/W2069143585, https://openalex.org/W1513234562, https://openalex.org/W2902426581, https://openalex.org/W2955200957, https://openalex.org/W2995604657, https://openalex.org/W2983819714, https://openalex.org/W2809837139, https://openalex.org/W2973482147, https://openalex.org/W1485080290, https://openalex.org/W2171793220, https://openalex.org/W3005833785, https://openalex.org/W2043216347, https://openalex.org/W2673773582, https://openalex.org/W2563970295, https://openalex.org/W3008591352, https://openalex.org/W2986678860, https://openalex.org/W3006551477, https://openalex.org/W1864199185, https://openalex.org/W2584983021, https://openalex.org/W2022185273, https://openalex.org/W3094329354, https://openalex.org/W2937048311, https://openalex.org/W2498590726, https://openalex.org/W2119443090, https://openalex.org/W2899396876, https://openalex.org/W2981587687, https://openalex.org/W2475636809, https://openalex.org/W2759210073, https://openalex.org/W2037886839, https://openalex.org/W1966243865, https://openalex.org/W1999900893, https://openalex.org/W2734932920, https://openalex.org/W2753136971, https://openalex.org/W2167320674, https://openalex.org/W2786784689, https://openalex.org/W4234876175, https://openalex.org/W2592263880, https://openalex.org/W4212774754 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 82, 92, 98, 107, 121, 130, 138 |
| abstract_inverted_index.As | 23 |
| abstract_inverted_index.In | 103, 150 |
| abstract_inverted_index.To | 77 |
| abstract_inverted_index.We | 117 |
| abstract_inverted_index.an | 114 |
| abstract_inverted_index.by | 164 |
| abstract_inverted_index.if | 35 |
| abstract_inverted_index.in | 11, 49, 75, 89, 156 |
| abstract_inverted_index.is | 7, 63, 73 |
| abstract_inverted_index.it | 145 |
| abstract_inverted_index.no | 65 |
| abstract_inverted_index.of | 3, 19, 30, 56, 68, 71, 85, 109 |
| abstract_inverted_index.so | 26 |
| abstract_inverted_index.to | 52, 59, 112, 128, 141, 166 |
| abstract_inverted_index.we | 36, 80, 105 |
| abstract_inverted_index.HPC | 94, 101 |
| abstract_inverted_index.NIC | 162 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.all | 143 |
| abstract_inverted_index.and | 42, 125, 161, 168 |
| abstract_inverted_index.for | 120 |
| abstract_inverted_index.has | 46, 137 |
| abstract_inverted_index.its | 148 |
| abstract_inverted_index.key | 86 |
| abstract_inverted_index.the | 17, 28, 171 |
| abstract_inverted_index.Cori | 157 |
| abstract_inverted_index.HPC. | 76 |
| abstract_inverted_index.This | 45 |
| abstract_inverted_index.does | 27 |
| abstract_inverted_index.end, | 79 |
| abstract_inverted_index.find | 142 |
| abstract_inverted_index.halt | 2 |
| abstract_inverted_index.node | 40 |
| abstract_inverted_index.rack | 122, 174 |
| abstract_inverted_index.risk | 29 |
| abstract_inverted_index.show | 118 |
| abstract_inverted_index.that | 78, 96, 119 |
| abstract_inverted_index.unit | 133 |
| abstract_inverted_index.what | 69 |
| abstract_inverted_index.with | 16, 134 |
| abstract_inverted_index.(HPC) | 14 |
| abstract_inverted_index.5.36% | 165 |
| abstract_inverted_index.99.5% | 139 |
| abstract_inverted_index.Cori, | 91, 129 |
| abstract_inverted_index.could | 158 |
| abstract_inverted_index.ideal | 152 |
| abstract_inverted_index.rack. | 149 |
| abstract_inverted_index.range | 70 |
| abstract_inverted_index.rigid | 39 |
| abstract_inverted_index.still | 169 |
| abstract_inverted_index.study | 67 |
| abstract_inverted_index.there | 62 |
| abstract_inverted_index.69.01% | 167 |
| abstract_inverted_index.enable | 53 |
| abstract_inverted_index.inside | 147 |
| abstract_inverted_index.memory | 160 |
| abstract_inverted_index.reduce | 159 |
| abstract_inverted_index.system | 95 |
| abstract_inverted_index.average | 173 |
| abstract_inverted_index.central | 131 |
| abstract_inverted_index.diverse | 99 |
| abstract_inverted_index.metrics | 87 |
| abstract_inverted_index.perform | 81 |
| abstract_inverted_index.profile | 106 |
| abstract_inverted_index.sampled | 88 |
| abstract_inverted_index.satisfy | 170 |
| abstract_inverted_index.scaling | 6 |
| abstract_inverted_index.similar | 127 |
| abstract_inverted_index.sparked | 47 |
| abstract_inverted_index.systems | 15 |
| abstract_inverted_index.variety | 108 |
| abstract_inverted_index.However, | 61 |
| abstract_inverted_index.analysis | 84 |
| abstract_inverted_index.detailed | 83 |
| abstract_inverted_index.emerging | 115 |
| abstract_inverted_index.executes | 97 |
| abstract_inverted_index.expected | 1 |
| abstract_inverted_index.hardware | 33, 57 |
| abstract_inverted_index.interest | 48 |
| abstract_inverted_index.numerous | 20 |
| abstract_inverted_index.preserve | 37 |
| abstract_inverted_index.requires | 146 |
| abstract_inverted_index.resource | 50, 154 |
| abstract_inverted_index.(cabinet) | 123 |
| abstract_inverted_index.NERSC’s | 90 |
| abstract_inverted_index.addition, | 104, 151 |
| abstract_inverted_index.computing | 13 |
| abstract_inverted_index.currently | 64 |
| abstract_inverted_index.emergence | 18 |
| abstract_inverted_index.expensive | 32 |
| abstract_inverted_index.increased | 9 |
| abstract_inverted_index.represent | 113 |
| abstract_inverted_index.resources | 34, 58, 144, 163 |
| abstract_inverted_index.today’s | 38 |
| abstract_inverted_index.workload. | 102, 116 |
| abstract_inverted_index.allocation | 55 |
| abstract_inverted_index.increases, | 25 |
| abstract_inverted_index.intra-rack | 135, 153 |
| abstract_inverted_index.motivating | 8 |
| abstract_inverted_index.processing | 132 |
| abstract_inverted_index.production | 93 |
| abstract_inverted_index.technology | 5 |
| abstract_inverted_index.worst-case | 172 |
| abstract_inverted_index.appropriate | 74 |
| abstract_inverted_index.data-driven | 66 |
| abstract_inverted_index.finer-grain | 54 |
| abstract_inverted_index.probability | 140 |
| abstract_inverted_index.reservation | 43 |
| abstract_inverted_index.specialized | 21 |
| abstract_inverted_index.strategies. | 44 |
| abstract_inverted_index.traditional | 4 |
| abstract_inverted_index.applications | 111, 126 |
| abstract_inverted_index.open-science | 100 |
| abstract_inverted_index.utilization. | 175 |
| abstract_inverted_index.accelerators. | 22 |
| abstract_inverted_index.applications. | 60 |
| abstract_inverted_index.configuration | 41, 124 |
| abstract_inverted_index.deep-learning | 110 |
| abstract_inverted_index.heterogeneity | 10, 24 |
| abstract_inverted_index.disaggregation | 51, 72, 136, 155 |
| abstract_inverted_index.underutilizing | 31 |
| abstract_inverted_index.high-performance | 12 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile.value | 0.98500224 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |