A Character-Level BiLSTM-CRF Model With Multi-Representations for Chinese Event Detection Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2943721
Using the word as a basic unit may undermine Chinese event detection model’s performance because of the inaccurate word boundaries generated by segmentation tools. Besides, word embeddings are contextual independent and cannot handle the polysemy of event triggers, which may prevent us from obtaining the desired performance. To address these issues, we propose a BiLSTM-CRF (Bidirectional Long Short-Term Memory Conditional Random Field) model using contextualized representations, which regards event detection task as a character-level sequence labeling problem and uses contextualized representations to disambiguate event triggers. Experiments show that our proposed method sets a new state-of-the-art, which proves Chinese characters could replace words for the Chinese event detection task. Besides, using contextualized representation reduces the false positive case, which verifies that this kind of representation could remedy the weakness of the word embedding technique. Based on the results, we believe that character-level models are worth exploring in the future.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2943721
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08848381.pdf
- OA Status
- gold
- Cited By
- 9
- References
- 53
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2976855161
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2976855161Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2943721Digital Object Identifier
- Title
-
A Character-Level BiLSTM-CRF Model With Multi-Representations for Chinese Event DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Xiaofeng Mu, Aiping XuList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2943721Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08848381.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08848381.pdfDirect OA link when available
- Concepts
-
Computer science, Conditional random field, Character (mathematics), Polysemy, Event (particle physics), Task (project management), Artificial intelligence, Sequence labeling, Word (group theory), Natural language processing, Representation (politics), Embedding, Field (mathematics), Linguistics, Mathematics, Economics, Politics, Management, Geometry, Law, Political science, Quantum mechanics, Physics, Pure mathematics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 3, 2021: 2, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
53Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2976855161 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2943721 |
| ids.doi | https://doi.org/10.1109/access.2019.2943721 |
| ids.mag | 2976855161 |
| ids.openalex | https://openalex.org/W2976855161 |
| fwci | 0.61447098 |
| type | article |
| title | A Character-Level BiLSTM-CRF Model With Multi-Representations for Chinese Event Detection |
| awards[0].id | https://openalex.org/G8808348219 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2017YFC0803700 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 146532 |
| biblio.first_page | 146524 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T13083 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9908000230789185 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Text Analysis Techniques |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9894000291824341 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| funders[0].id | https://openalex.org/F4320335777 |
| funders[0].ror | |
| funders[0].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7864441275596619 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C152565575 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7696346044540405 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1124538 |
| concepts[1].display_name | Conditional random field |
| concepts[2].id | https://openalex.org/C2780861071 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7092974185943604 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1062934 |
| concepts[2].display_name | Character (mathematics) |
| concepts[3].id | https://openalex.org/C2780276568 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6737905740737915 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q191928 |
| concepts[3].display_name | Polysemy |
| concepts[4].id | https://openalex.org/C2779662365 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6324863433837891 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[4].display_name | Event (particle physics) |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6255191564559937 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.6085481643676758 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C35639132 |
| concepts[7].level | 3 |
| concepts[7].score | 0.607164204120636 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7452468 |
| concepts[7].display_name | Sequence labeling |
| concepts[8].id | https://openalex.org/C90805587 |
| concepts[8].level | 2 |
| concepts[8].score | 0.6059028506278992 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[8].display_name | Word (group theory) |
| concepts[9].id | https://openalex.org/C204321447 |
| concepts[9].level | 1 |
| concepts[9].score | 0.594036877155304 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[9].display_name | Natural language processing |
| concepts[10].id | https://openalex.org/C2776359362 |
| concepts[10].level | 3 |
| concepts[10].score | 0.5571430325508118 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[10].display_name | Representation (politics) |
| concepts[11].id | https://openalex.org/C41608201 |
| concepts[11].level | 2 |
| concepts[11].score | 0.47232598066329956 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[11].display_name | Embedding |
| concepts[12].id | https://openalex.org/C9652623 |
| concepts[12].level | 2 |
| concepts[12].score | 0.45838871598243713 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[12].display_name | Field (mathematics) |
| concepts[13].id | https://openalex.org/C41895202 |
| concepts[13].level | 1 |
| concepts[13].score | 0.17217183113098145 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[13].display_name | Linguistics |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.09383893013000488 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C162324750 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[15].display_name | Economics |
| concepts[16].id | https://openalex.org/C94625758 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[16].display_name | Politics |
| concepts[17].id | https://openalex.org/C187736073 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[17].display_name | Management |
| concepts[18].id | https://openalex.org/C2524010 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[18].display_name | Geometry |
| concepts[19].id | https://openalex.org/C199539241 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[19].display_name | Law |
| concepts[20].id | https://openalex.org/C17744445 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[20].display_name | Political science |
| concepts[21].id | https://openalex.org/C62520636 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[21].display_name | Quantum mechanics |
| concepts[22].id | https://openalex.org/C121332964 |
| concepts[22].level | 0 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[22].display_name | Physics |
| concepts[23].id | https://openalex.org/C202444582 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[23].display_name | Pure mathematics |
| concepts[24].id | https://openalex.org/C138885662 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[24].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7864441275596619 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/conditional-random-field |
| keywords[1].score | 0.7696346044540405 |
| keywords[1].display_name | Conditional random field |
| keywords[2].id | https://openalex.org/keywords/character |
| keywords[2].score | 0.7092974185943604 |
| keywords[2].display_name | Character (mathematics) |
| keywords[3].id | https://openalex.org/keywords/polysemy |
| keywords[3].score | 0.6737905740737915 |
| keywords[3].display_name | Polysemy |
| keywords[4].id | https://openalex.org/keywords/event |
| keywords[4].score | 0.6324863433837891 |
| keywords[4].display_name | Event (particle physics) |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.6255191564559937 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.6085481643676758 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/sequence-labeling |
| keywords[7].score | 0.607164204120636 |
| keywords[7].display_name | Sequence labeling |
| keywords[8].id | https://openalex.org/keywords/word |
| keywords[8].score | 0.6059028506278992 |
| keywords[8].display_name | Word (group theory) |
| keywords[9].id | https://openalex.org/keywords/natural-language-processing |
| keywords[9].score | 0.594036877155304 |
| keywords[9].display_name | Natural language processing |
| keywords[10].id | https://openalex.org/keywords/representation |
| keywords[10].score | 0.5571430325508118 |
| keywords[10].display_name | Representation (politics) |
| keywords[11].id | https://openalex.org/keywords/embedding |
| keywords[11].score | 0.47232598066329956 |
| keywords[11].display_name | Embedding |
| keywords[12].id | https://openalex.org/keywords/field |
| keywords[12].score | 0.45838871598243713 |
| keywords[12].display_name | Field (mathematics) |
| keywords[13].id | https://openalex.org/keywords/linguistics |
| keywords[13].score | 0.17217183113098145 |
| keywords[13].display_name | Linguistics |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.09383893013000488 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2943721 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08848381.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2943721 |
| locations[1].id | pmh:oai:doaj.org/article:1a34bd0436004199ba953b0c9039d240 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 7, Pp 146524-146532 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/1a34bd0436004199ba953b0c9039d240 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101597421 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0780-0812 |
| authorships[0].author.display_name | Xiaofeng Mu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science, Wuhan University, Wuhan, China |
| authorships[0].institutions[0].id | https://openalex.org/I37461747 |
| authorships[0].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Wuhan University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaofeng Mu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science, Wuhan University, Wuhan, China |
| authorships[1].author.id | https://openalex.org/A5102770758 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9854-852X |
| authorships[1].author.display_name | Aiping Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37461747 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science, Wuhan University, Wuhan, China |
| authorships[1].institutions[0].id | https://openalex.org/I37461747 |
| authorships[1].institutions[0].ror | https://ror.org/033vjfk17 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37461747 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Wuhan University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Aiping Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer Science, Wuhan University, Wuhan, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08848381.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Character-Level BiLSTM-CRF Model With Multi-Representations for Chinese Event Detection |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2962906565, https://openalex.org/W2798423868, https://openalex.org/W3027026357, https://openalex.org/W3015678144, https://openalex.org/W3126392069, https://openalex.org/W2109665237, https://openalex.org/W2996257819, https://openalex.org/W2076440176, https://openalex.org/W3136048405, https://openalex.org/W2944198262 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2019.2943721 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08848381.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2943721 |
| primary_location.id | doi:10.1109/access.2019.2943721 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08848381.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2943721 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2890776849, https://openalex.org/W2798636921, https://openalex.org/W6746932706, https://openalex.org/W2962911678, https://openalex.org/W2517782820, https://openalex.org/W2556605533, https://openalex.org/W2507974895, https://openalex.org/W2962902328, https://openalex.org/W2008830554, https://openalex.org/W2962739339, https://openalex.org/W6755207826, https://openalex.org/W6683738474, https://openalex.org/W6753112180, https://openalex.org/W2013842895, https://openalex.org/W6600347082, https://openalex.org/W2963940534, https://openalex.org/W6684169581, https://openalex.org/W2558287987, https://openalex.org/W2508618307, https://openalex.org/W6682691769, https://openalex.org/W2475245295, https://openalex.org/W2962835228, https://openalex.org/W2493916176, https://openalex.org/W2250539671, https://openalex.org/W2250999640, https://openalex.org/W6714112401, https://openalex.org/W6674330103, https://openalex.org/W6616837769, https://openalex.org/W6631943919, https://openalex.org/W6638545294, https://openalex.org/W6631190155, https://openalex.org/W6621993037, https://openalex.org/W2143612262, https://openalex.org/W581956982, https://openalex.org/W4294170691, https://openalex.org/W1815076433, https://openalex.org/W2964121744, https://openalex.org/W2896457183, https://openalex.org/W2952230511, https://openalex.org/W2158899491, https://openalex.org/W8550301, https://openalex.org/W2095705004, https://openalex.org/W2407338347, https://openalex.org/W2165516035, https://openalex.org/W2798935874, https://openalex.org/W2175675225, https://openalex.org/W752825483, https://openalex.org/W2833383446, https://openalex.org/W2775730905, https://openalex.org/W1533861849, https://openalex.org/W1522301498, https://openalex.org/W2963341956, https://openalex.org/W2153579005 |
| referenced_works_count | 53 |
| abstract_inverted_index.a | 4, 53, 72, 92 |
| abstract_inverted_index.To | 47 |
| abstract_inverted_index.as | 3, 71 |
| abstract_inverted_index.by | 21 |
| abstract_inverted_index.in | 145 |
| abstract_inverted_index.of | 15, 35, 122, 128 |
| abstract_inverted_index.on | 134 |
| abstract_inverted_index.to | 81 |
| abstract_inverted_index.us | 41 |
| abstract_inverted_index.we | 51, 137 |
| abstract_inverted_index.and | 30, 77 |
| abstract_inverted_index.are | 27, 142 |
| abstract_inverted_index.for | 102 |
| abstract_inverted_index.may | 7, 39 |
| abstract_inverted_index.new | 93 |
| abstract_inverted_index.our | 88 |
| abstract_inverted_index.the | 1, 16, 33, 44, 103, 113, 126, 129, 135, 146 |
| abstract_inverted_index.Long | 56 |
| abstract_inverted_index.from | 42 |
| abstract_inverted_index.kind | 121 |
| abstract_inverted_index.sets | 91 |
| abstract_inverted_index.show | 86 |
| abstract_inverted_index.task | 70 |
| abstract_inverted_index.that | 87, 119, 139 |
| abstract_inverted_index.this | 120 |
| abstract_inverted_index.unit | 6 |
| abstract_inverted_index.uses | 78 |
| abstract_inverted_index.word | 2, 18, 25, 130 |
| abstract_inverted_index.Based | 133 |
| abstract_inverted_index.Using | 0 |
| abstract_inverted_index.basic | 5 |
| abstract_inverted_index.case, | 116 |
| abstract_inverted_index.could | 99, 124 |
| abstract_inverted_index.event | 10, 36, 68, 83, 105 |
| abstract_inverted_index.false | 114 |
| abstract_inverted_index.model | 62 |
| abstract_inverted_index.task. | 107 |
| abstract_inverted_index.these | 49 |
| abstract_inverted_index.using | 63, 109 |
| abstract_inverted_index.which | 38, 66, 95, 117 |
| abstract_inverted_index.words | 101 |
| abstract_inverted_index.worth | 143 |
| abstract_inverted_index.Field) | 61 |
| abstract_inverted_index.Memory | 58 |
| abstract_inverted_index.Random | 60 |
| abstract_inverted_index.cannot | 31 |
| abstract_inverted_index.handle | 32 |
| abstract_inverted_index.method | 90 |
| abstract_inverted_index.models | 141 |
| abstract_inverted_index.proves | 96 |
| abstract_inverted_index.remedy | 125 |
| abstract_inverted_index.tools. | 23 |
| abstract_inverted_index.Chinese | 9, 97, 104 |
| abstract_inverted_index.address | 48 |
| abstract_inverted_index.because | 14 |
| abstract_inverted_index.believe | 138 |
| abstract_inverted_index.desired | 45 |
| abstract_inverted_index.future. | 147 |
| abstract_inverted_index.issues, | 50 |
| abstract_inverted_index.prevent | 40 |
| abstract_inverted_index.problem | 76 |
| abstract_inverted_index.propose | 52 |
| abstract_inverted_index.reduces | 112 |
| abstract_inverted_index.regards | 67 |
| abstract_inverted_index.replace | 100 |
| abstract_inverted_index.Besides, | 24, 108 |
| abstract_inverted_index.labeling | 75 |
| abstract_inverted_index.polysemy | 34 |
| abstract_inverted_index.positive | 115 |
| abstract_inverted_index.proposed | 89 |
| abstract_inverted_index.results, | 136 |
| abstract_inverted_index.sequence | 74 |
| abstract_inverted_index.verifies | 118 |
| abstract_inverted_index.weakness | 127 |
| abstract_inverted_index.detection | 11, 69, 106 |
| abstract_inverted_index.embedding | 131 |
| abstract_inverted_index.exploring | 144 |
| abstract_inverted_index.generated | 20 |
| abstract_inverted_index.obtaining | 43 |
| abstract_inverted_index.triggers, | 37 |
| abstract_inverted_index.triggers. | 84 |
| abstract_inverted_index.undermine | 8 |
| abstract_inverted_index.BiLSTM-CRF | 54 |
| abstract_inverted_index.Short-Term | 57 |
| abstract_inverted_index.boundaries | 19 |
| abstract_inverted_index.characters | 98 |
| abstract_inverted_index.contextual | 28 |
| abstract_inverted_index.embeddings | 26 |
| abstract_inverted_index.inaccurate | 17 |
| abstract_inverted_index.technique. | 132 |
| abstract_inverted_index.Conditional | 59 |
| abstract_inverted_index.Experiments | 85 |
| abstract_inverted_index.independent | 29 |
| abstract_inverted_index.performance | 13 |
| abstract_inverted_index.disambiguate | 82 |
| abstract_inverted_index.performance. | 46 |
| abstract_inverted_index.segmentation | 22 |
| abstract_inverted_index.(Bidirectional | 55 |
| abstract_inverted_index.contextualized | 64, 79, 110 |
| abstract_inverted_index.model’s | 12 |
| abstract_inverted_index.representation | 111, 123 |
| abstract_inverted_index.character-level | 73, 140 |
| abstract_inverted_index.representations | 80 |
| abstract_inverted_index.representations, | 65 |
| abstract_inverted_index.state-of-the-art, | 94 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.75905716 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |