A Classification Method for Judging the Depth of Chest Compression Based on CNN Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-38347/v1
The displacement can be calculated based on the integrated value of the acceleration signal waveform obtained by the acceleration sensor or gyroscope. However, this method is not effective in accurate measurement. Although some studies have improved the method of calculating accurate distance values by overcoming the effects of sensor noise or integration delay, the evaluation is still affected by sensor accuracy and environment. However, there are some special displacements, such as the chest compression. The displacement is a reciprocating motion and will return to the starting point again. Therefore, the acceleration waveform changes have obvious characteristics in the two stages from moving to the equilibrium position and returning to the starting point. Therefore, we propose an embedded classification method based on one-dimensional Convolutional Neural Network (CNN), which directly learns from the data of chest compressions and performs the signal formed by the Classification, distinguish the signal waveform under the standard pressing distance, so as to replace the calculation of distance measurement, and is not affected by factors such as pressure occlusion and electromagnetic wave interference, and has certain practical value on site. We tagged compressions and collected data from the simulator. The experiment evaluates the proposed CNN structure, and compares the classification results of the sample data with several CNN networks and SVMs with different structures in the literature. The results show that with sufficient training, the proposed 1D-CNN method can achieve an accuracy rate of more than 95%, and balances the accuracy rate and the hardware requirements.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-38347/v1
- https://www.researchsquare.com/article/rs-38347/v1.pdf?c=1594250996000
- OA Status
- green
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3158803031
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3158803031Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-38347/v1Digital Object Identifier
- Title
-
A Classification Method for Judging the Depth of Chest Compression Based on CNNWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-07-08Full publication date if available
- Authors
-
Liang Zhao, Yu Bao, Richard D. Ye, Aijuan Zhang, Yu ZhangList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-38347/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-38347/v1.pdf?c=1594250996000Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-38347/v1.pdf?c=1594250996000Direct OA link when available
- Concepts
-
Computer science, Compression (physics), Artificial intelligence, Pattern recognition (psychology), Materials science, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3158803031 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-38347/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-38347/v1 |
| ids.mag | 3158803031 |
| ids.openalex | https://openalex.org/W3158803031 |
| fwci | 0.0 |
| type | preprint |
| title | A Classification Method for Judging the Depth of Chest Compression Based on CNN |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14510 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9434999823570251 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Medical Imaging and Analysis |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9114000201225281 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5264212489128113 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C180016635 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5149458050727844 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2712821 |
| concepts[1].display_name | Compression (physics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4309278428554535 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.32213664054870605 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.07843908667564392 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C159985019 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[5].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5264212489128113 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/compression |
| keywords[1].score | 0.5149458050727844 |
| keywords[1].display_name | Compression (physics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.4309278428554535 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.32213664054870605 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.07843908667564392 |
| keywords[4].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-38347/v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402450 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Research Square (Research Square) |
| locations[0].source.host_organization | https://openalex.org/I4210096694 |
| locations[0].source.host_organization_name | Research Square (United States) |
| locations[0].source.host_organization_lineage | https://openalex.org/I4210096694 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-38347/v1.pdf?c=1594250996000 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-38347/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5030196237 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9658-245X |
| authorships[0].author.display_name | Liang Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[0].raw_affiliation_string | China University of Mining and Technology |
| authorships[0].institutions[0].id | https://openalex.org/I25757504 |
| authorships[0].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Mining and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liang Zhao |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | China University of Mining and Technology |
| authorships[1].author.id | https://openalex.org/A5054558506 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5276-7532 |
| authorships[1].author.display_name | Yu Bao |
| authorships[1].countries | CN, US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210142152 |
| authorships[1].affiliations[0].raw_affiliation_string | ORCiD: https://orcid.org/0000-0002-5276-7532 |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[1].raw_affiliation_string | China University of Mining and Technology |
| authorships[1].institutions[0].id | https://openalex.org/I25757504 |
| authorships[1].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Mining and Technology |
| authorships[1].institutions[1].id | https://openalex.org/I4210142152 |
| authorships[1].institutions[1].ror | https://ror.org/04fa4r544 |
| authorships[1].institutions[1].type | nonprofit |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210142152 |
| authorships[1].institutions[1].country_code | US |
| authorships[1].institutions[1].display_name | ORCID |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yu Bao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | China University of Mining and Technology, ORCiD: https://orcid.org/0000-0002-5276-7532 |
| authorships[2].author.id | https://openalex.org/A5066886337 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2164-5620 |
| authorships[2].author.display_name | Richard D. Ye |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[2].affiliations[0].raw_affiliation_string | China University of Mining and Technology |
| authorships[2].institutions[0].id | https://openalex.org/I25757504 |
| authorships[2].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Mining and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ruidong Ye |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | China University of Mining and Technology |
| authorships[3].author.id | https://openalex.org/A5066914616 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Aijuan Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[3].affiliations[0].raw_affiliation_string | china university of mining and technology |
| authorships[3].institutions[0].id | https://openalex.org/I25757504 |
| authorships[3].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China University of Mining and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aijuan Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | china university of mining and technology |
| authorships[4].author.id | https://openalex.org/A5100750037 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0658-3326 |
| authorships[4].author.display_name | Yu Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[4].affiliations[0].raw_affiliation_string | China university of mining and technology |
| authorships[4].institutions[0].id | https://openalex.org/I25757504 |
| authorships[4].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China University of Mining and Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yu Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | China university of mining and technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-38347/v1.pdf?c=1594250996000 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Classification Method for Judging the Depth of Chest Compression Based on CNN |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14510 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9434999823570251 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Medical Imaging and Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-38347/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402450 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Research Square (Research Square) |
| best_oa_location.source.host_organization | https://openalex.org/I4210096694 |
| best_oa_location.source.host_organization_name | Research Square (United States) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-38347/v1.pdf?c=1594250996000 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-38347/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-38347/v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402450 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Research Square (Research Square) |
| primary_location.source.host_organization | https://openalex.org/I4210096694 |
| primary_location.source.host_organization_name | Research Square (United States) |
| primary_location.source.host_organization_lineage | https://openalex.org/I4210096694 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-38347/v1.pdf?c=1594250996000 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-38347/v1 |
| publication_date | 2020-07-08 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W1975401940, https://openalex.org/W6833990276, https://openalex.org/W2594576433, https://openalex.org/W2231787834, https://openalex.org/W2112796928, https://openalex.org/W3018960895, https://openalex.org/W2107133752, https://openalex.org/W172260869, https://openalex.org/W2963838685, https://openalex.org/W2407734902, https://openalex.org/W1971868365, https://openalex.org/W2319629372, https://openalex.org/W2100495367, https://openalex.org/W2340876066 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 78 |
| abstract_inverted_index.We | 183 |
| abstract_inverted_index.an | 116, 233 |
| abstract_inverted_index.as | 71, 154, 169 |
| abstract_inverted_index.be | 4 |
| abstract_inverted_index.by | 17, 44, 59, 141, 166 |
| abstract_inverted_index.in | 29, 97, 217 |
| abstract_inverted_index.is | 26, 56, 77, 163 |
| abstract_inverted_index.of | 11, 39, 48, 133, 159, 204, 236 |
| abstract_inverted_index.on | 7, 121, 181 |
| abstract_inverted_index.or | 21, 51 |
| abstract_inverted_index.so | 153 |
| abstract_inverted_index.to | 84, 103, 109, 155 |
| abstract_inverted_index.we | 114 |
| abstract_inverted_index.CNN | 197, 210 |
| abstract_inverted_index.The | 1, 75, 192, 220 |
| abstract_inverted_index.and | 62, 81, 107, 136, 162, 172, 176, 186, 199, 212, 240, 245 |
| abstract_inverted_index.are | 66 |
| abstract_inverted_index.can | 3, 231 |
| abstract_inverted_index.has | 177 |
| abstract_inverted_index.not | 27, 164 |
| abstract_inverted_index.the | 8, 12, 18, 37, 46, 54, 72, 85, 90, 98, 104, 110, 131, 138, 142, 145, 149, 157, 190, 195, 201, 205, 218, 227, 242, 246 |
| abstract_inverted_index.two | 99 |
| abstract_inverted_index.95%, | 239 |
| abstract_inverted_index.SVMs | 213 |
| abstract_inverted_index.data | 132, 188, 207 |
| abstract_inverted_index.from | 101, 130, 189 |
| abstract_inverted_index.have | 35, 94 |
| abstract_inverted_index.more | 237 |
| abstract_inverted_index.rate | 235, 244 |
| abstract_inverted_index.show | 222 |
| abstract_inverted_index.some | 33, 67 |
| abstract_inverted_index.such | 70, 168 |
| abstract_inverted_index.than | 238 |
| abstract_inverted_index.that | 223 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.wave | 174 |
| abstract_inverted_index.will | 82 |
| abstract_inverted_index.with | 208, 214, 224 |
| abstract_inverted_index.based | 6, 120 |
| abstract_inverted_index.chest | 73, 134 |
| abstract_inverted_index.noise | 50 |
| abstract_inverted_index.point | 87 |
| abstract_inverted_index.site. | 182 |
| abstract_inverted_index.still | 57 |
| abstract_inverted_index.there | 65 |
| abstract_inverted_index.under | 148 |
| abstract_inverted_index.value | 10, 180 |
| abstract_inverted_index.which | 127 |
| abstract_inverted_index.(CNN), | 126 |
| abstract_inverted_index.1D-CNN | 229 |
| abstract_inverted_index.Neural | 124 |
| abstract_inverted_index.again. | 88 |
| abstract_inverted_index.delay, | 53 |
| abstract_inverted_index.formed | 140 |
| abstract_inverted_index.learns | 129 |
| abstract_inverted_index.method | 25, 38, 119, 230 |
| abstract_inverted_index.motion | 80 |
| abstract_inverted_index.moving | 102 |
| abstract_inverted_index.point. | 112 |
| abstract_inverted_index.return | 83 |
| abstract_inverted_index.sample | 206 |
| abstract_inverted_index.sensor | 20, 49, 60 |
| abstract_inverted_index.signal | 14, 139, 146 |
| abstract_inverted_index.stages | 100 |
| abstract_inverted_index.tagged | 184 |
| abstract_inverted_index.values | 43 |
| abstract_inverted_index.Network | 125 |
| abstract_inverted_index.achieve | 232 |
| abstract_inverted_index.certain | 178 |
| abstract_inverted_index.changes | 93 |
| abstract_inverted_index.effects | 47 |
| abstract_inverted_index.factors | 167 |
| abstract_inverted_index.obvious | 95 |
| abstract_inverted_index.propose | 115 |
| abstract_inverted_index.replace | 156 |
| abstract_inverted_index.results | 203, 221 |
| abstract_inverted_index.several | 209 |
| abstract_inverted_index.special | 68 |
| abstract_inverted_index.studies | 34 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 32 |
| abstract_inverted_index.However, | 23, 64 |
| abstract_inverted_index.accuracy | 61, 234, 243 |
| abstract_inverted_index.accurate | 30, 41 |
| abstract_inverted_index.affected | 58, 165 |
| abstract_inverted_index.balances | 241 |
| abstract_inverted_index.compares | 200 |
| abstract_inverted_index.directly | 128 |
| abstract_inverted_index.distance | 42, 160 |
| abstract_inverted_index.embedded | 117 |
| abstract_inverted_index.hardware | 247 |
| abstract_inverted_index.improved | 36 |
| abstract_inverted_index.networks | 211 |
| abstract_inverted_index.obtained | 16 |
| abstract_inverted_index.performs | 137 |
| abstract_inverted_index.position | 106 |
| abstract_inverted_index.pressing | 151 |
| abstract_inverted_index.pressure | 170 |
| abstract_inverted_index.proposed | 196, 228 |
| abstract_inverted_index.standard | 150 |
| abstract_inverted_index.starting | 86, 111 |
| abstract_inverted_index.waveform | 15, 92, 147 |
| abstract_inverted_index.collected | 187 |
| abstract_inverted_index.different | 215 |
| abstract_inverted_index.distance, | 152 |
| abstract_inverted_index.effective | 28 |
| abstract_inverted_index.evaluates | 194 |
| abstract_inverted_index.occlusion | 171 |
| abstract_inverted_index.practical | 179 |
| abstract_inverted_index.returning | 108 |
| abstract_inverted_index.training, | 226 |
| abstract_inverted_index.Therefore, | 89, 113 |
| abstract_inverted_index.calculated | 5 |
| abstract_inverted_index.evaluation | 55 |
| abstract_inverted_index.experiment | 193 |
| abstract_inverted_index.gyroscope. | 22 |
| abstract_inverted_index.integrated | 9 |
| abstract_inverted_index.overcoming | 45 |
| abstract_inverted_index.simulator. | 191 |
| abstract_inverted_index.structure, | 198 |
| abstract_inverted_index.structures | 216 |
| abstract_inverted_index.sufficient | 225 |
| abstract_inverted_index.calculating | 40 |
| abstract_inverted_index.calculation | 158 |
| abstract_inverted_index.distinguish | 144 |
| abstract_inverted_index.equilibrium | 105 |
| abstract_inverted_index.integration | 52 |
| abstract_inverted_index.literature. | 219 |
| abstract_inverted_index.acceleration | 13, 19, 91 |
| abstract_inverted_index.compression. | 74 |
| abstract_inverted_index.compressions | 135, 185 |
| abstract_inverted_index.displacement | 2, 76 |
| abstract_inverted_index.environment. | 63 |
| abstract_inverted_index.measurement, | 161 |
| abstract_inverted_index.measurement. | 31 |
| abstract_inverted_index.Convolutional | 123 |
| abstract_inverted_index.interference, | 175 |
| abstract_inverted_index.reciprocating | 79 |
| abstract_inverted_index.requirements. | 248 |
| abstract_inverted_index.classification | 118, 202 |
| abstract_inverted_index.displacements, | 69 |
| abstract_inverted_index.Classification, | 143 |
| abstract_inverted_index.characteristics | 96 |
| abstract_inverted_index.electromagnetic | 173 |
| abstract_inverted_index.one-dimensional | 122 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5030196237 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I25757504 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.17667585 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |