A Close Look at Spatial Modeling: From Attention to Convolution Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2212.12552
Vision Transformers have shown great promise recently for many vision tasks due to the insightful architecture design and attention mechanism. By revisiting the self-attention responses in Transformers, we empirically observe two interesting issues. First, Vision Transformers present a queryirrelevant behavior at deep layers, where the attention maps exhibit nearly consistent contexts in global scope, regardless of the query patch position (also head-irrelevant). Second, the attention maps are intrinsically sparse, few tokens dominate the attention weights; introducing the knowledge from ConvNets would largely smooth the attention and enhance the performance. Motivated by above observations, we generalize self-attention formulation to abstract a queryirrelevant global context directly and further integrate the global context into convolutions. The resulting model, a Fully Convolutional Vision Transformer (i.e., FCViT), purely consists of convolutional layers and firmly inherits the merits of both attention mechanism and convolutions, including dynamic property, weight sharing, and short- and long-range feature modeling, etc. Experimental results demonstrate the effectiveness of FCViT. With less than 14M parameters, our FCViT-S12 outperforms related work ResT-Lite by 3.7% top1 accuracy on ImageNet-1K. When scaling FCViT to larger models, we still perform better than previous state-of-the-art ConvNeXt with even fewer parameters. FCViT-based models also demonstrate promising transferability to downstream tasks, like object detection, instance segmentation, and semantic segmentation. Codes and models are made available at: https://github.com/ma-xu/FCViT.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2212.12552
- https://arxiv.org/pdf/2212.12552
- OA Status
- green
- Cited By
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312225519
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312225519Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2212.12552Digital Object Identifier
- Title
-
A Close Look at Spatial Modeling: From Attention to ConvolutionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-23Full publication date if available
- Authors
-
Xu Ma, Huan Wang, Can Qin, Kunpeng Li, Xingchen Zhao, Jie Fu, Yun FuList of authors in order
- Landing page
-
https://arxiv.org/abs/2212.12552Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2212.12552Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2212.12552Direct OA link when available
- Concepts
-
Computer science, Segmentation, Artificial intelligence, Convolutional neural network, Transformer, Convolution (computer science), Pattern recognition (psychology), Machine learning, Artificial neural network, Physics, Voltage, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 4, 2023: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312225519 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2212.12552 |
| ids.doi | https://doi.org/10.48550/arxiv.2212.12552 |
| ids.openalex | https://openalex.org/W4312225519 |
| fwci | |
| type | preprint |
| title | A Close Look at Spatial Modeling: From Attention to Convolution |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10627 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9965000152587891 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Image and Video Retrieval Techniques |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.995199978351593 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8197352886199951 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6053475737571716 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5655044913291931 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5447458028793335 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C66322947 |
| concepts[4].level | 3 |
| concepts[4].score | 0.511532187461853 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11658 |
| concepts[4].display_name | Transformer |
| concepts[5].id | https://openalex.org/C45347329 |
| concepts[5].level | 3 |
| concepts[5].score | 0.45510780811309814 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[5].display_name | Convolution (computer science) |
| concepts[6].id | https://openalex.org/C153180895 |
| concepts[6].level | 2 |
| concepts[6].score | 0.36244720220565796 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[6].display_name | Pattern recognition (psychology) |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36211252212524414 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C50644808 |
| concepts[8].level | 2 |
| concepts[8].score | 0.23564526438713074 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[8].display_name | Artificial neural network |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C165801399 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25428 |
| concepts[10].display_name | Voltage |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8197352886199951 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6053475737571716 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5655044913291931 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.5447458028793335 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/transformer |
| keywords[4].score | 0.511532187461853 |
| keywords[4].display_name | Transformer |
| keywords[5].id | https://openalex.org/keywords/convolution |
| keywords[5].score | 0.45510780811309814 |
| keywords[5].display_name | Convolution (computer science) |
| keywords[6].id | https://openalex.org/keywords/pattern-recognition |
| keywords[6].score | 0.36244720220565796 |
| keywords[6].display_name | Pattern recognition (psychology) |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.36211252212524414 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[8].score | 0.23564526438713074 |
| keywords[8].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2212.12552 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2212.12552 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2212.12552 |
| locations[1].id | doi:10.48550/arxiv.2212.12552 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2212.12552 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5018168958 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7674-3589 |
| authorships[0].author.display_name | Xu Ma |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ma, Xu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100331980 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6951-901X |
| authorships[1].author.display_name | Huan Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Huan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5021042598 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0712-5378 |
| authorships[2].author.display_name | Can Qin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qin, Can |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100654289 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5805-793X |
| authorships[3].author.display_name | Kunpeng Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Kunpeng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101447875 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6740-3432 |
| authorships[4].author.display_name | Xingchen Zhao |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhao, Xingchen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100666921 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5596-8391 |
| authorships[5].author.display_name | Jie Fu |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Fu, Jie |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5005819096 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-5098-2853 |
| authorships[6].author.display_name | Yun Fu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Fu, Yun |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2212.12552 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Close Look at Spatial Modeling: From Attention to Convolution |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4293226380, https://openalex.org/W4321487865, https://openalex.org/W4313906399, https://openalex.org/W4391266461, https://openalex.org/W2590798552, https://openalex.org/W2811106690, https://openalex.org/W4239306820, https://openalex.org/W2947043951, https://openalex.org/W2964954556, https://openalex.org/W2890372105 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2212.12552 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2212.12552 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2212.12552 |
| primary_location.id | pmh:oai:arXiv.org:2212.12552 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2212.12552 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2212.12552 |
| publication_date | 2022-12-23 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 37, 99, 115 |
| abstract_inverted_index.By | 20 |
| abstract_inverted_index.at | 40 |
| abstract_inverted_index.by | 90, 168 |
| abstract_inverted_index.in | 25, 51 |
| abstract_inverted_index.of | 55, 124, 132, 155 |
| abstract_inverted_index.on | 172 |
| abstract_inverted_index.to | 12, 97, 177, 198 |
| abstract_inverted_index.we | 27, 93, 180 |
| abstract_inverted_index.14M | 160 |
| abstract_inverted_index.The | 112 |
| abstract_inverted_index.and | 17, 85, 104, 127, 136, 143, 145, 206, 210 |
| abstract_inverted_index.are | 66, 212 |
| abstract_inverted_index.at: | 215 |
| abstract_inverted_index.due | 11 |
| abstract_inverted_index.few | 69 |
| abstract_inverted_index.for | 7 |
| abstract_inverted_index.our | 162 |
| abstract_inverted_index.the | 13, 22, 44, 56, 63, 72, 76, 83, 87, 107, 130, 153 |
| abstract_inverted_index.two | 30 |
| abstract_inverted_index.3.7% | 169 |
| abstract_inverted_index.When | 174 |
| abstract_inverted_index.With | 157 |
| abstract_inverted_index.also | 194 |
| abstract_inverted_index.both | 133 |
| abstract_inverted_index.deep | 41 |
| abstract_inverted_index.etc. | 149 |
| abstract_inverted_index.even | 189 |
| abstract_inverted_index.from | 78 |
| abstract_inverted_index.have | 2 |
| abstract_inverted_index.into | 110 |
| abstract_inverted_index.less | 158 |
| abstract_inverted_index.like | 201 |
| abstract_inverted_index.made | 213 |
| abstract_inverted_index.many | 8 |
| abstract_inverted_index.maps | 46, 65 |
| abstract_inverted_index.than | 159, 184 |
| abstract_inverted_index.top1 | 170 |
| abstract_inverted_index.with | 188 |
| abstract_inverted_index.work | 166 |
| abstract_inverted_index.(also | 60 |
| abstract_inverted_index.Codes | 209 |
| abstract_inverted_index.FCViT | 176 |
| abstract_inverted_index.Fully | 116 |
| abstract_inverted_index.above | 91 |
| abstract_inverted_index.fewer | 190 |
| abstract_inverted_index.great | 4 |
| abstract_inverted_index.patch | 58 |
| abstract_inverted_index.query | 57 |
| abstract_inverted_index.shown | 3 |
| abstract_inverted_index.still | 181 |
| abstract_inverted_index.tasks | 10 |
| abstract_inverted_index.where | 43 |
| abstract_inverted_index.would | 80 |
| abstract_inverted_index.(i.e., | 120 |
| abstract_inverted_index.FCViT. | 156 |
| abstract_inverted_index.First, | 33 |
| abstract_inverted_index.Vision | 0, 34, 118 |
| abstract_inverted_index.better | 183 |
| abstract_inverted_index.design | 16 |
| abstract_inverted_index.firmly | 128 |
| abstract_inverted_index.global | 52, 101, 108 |
| abstract_inverted_index.larger | 178 |
| abstract_inverted_index.layers | 126 |
| abstract_inverted_index.merits | 131 |
| abstract_inverted_index.model, | 114 |
| abstract_inverted_index.models | 193, 211 |
| abstract_inverted_index.nearly | 48 |
| abstract_inverted_index.object | 202 |
| abstract_inverted_index.purely | 122 |
| abstract_inverted_index.scope, | 53 |
| abstract_inverted_index.short- | 144 |
| abstract_inverted_index.smooth | 82 |
| abstract_inverted_index.tasks, | 200 |
| abstract_inverted_index.tokens | 70 |
| abstract_inverted_index.vision | 9 |
| abstract_inverted_index.weight | 141 |
| abstract_inverted_index.FCViT), | 121 |
| abstract_inverted_index.Second, | 62 |
| abstract_inverted_index.context | 102, 109 |
| abstract_inverted_index.dynamic | 139 |
| abstract_inverted_index.enhance | 86 |
| abstract_inverted_index.exhibit | 47 |
| abstract_inverted_index.feature | 147 |
| abstract_inverted_index.further | 105 |
| abstract_inverted_index.issues. | 32 |
| abstract_inverted_index.largely | 81 |
| abstract_inverted_index.layers, | 42 |
| abstract_inverted_index.models, | 179 |
| abstract_inverted_index.observe | 29 |
| abstract_inverted_index.perform | 182 |
| abstract_inverted_index.present | 36 |
| abstract_inverted_index.promise | 5 |
| abstract_inverted_index.related | 165 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.scaling | 175 |
| abstract_inverted_index.sparse, | 68 |
| abstract_inverted_index.ConvNeXt | 187 |
| abstract_inverted_index.ConvNets | 79 |
| abstract_inverted_index.abstract | 98 |
| abstract_inverted_index.accuracy | 171 |
| abstract_inverted_index.behavior | 39 |
| abstract_inverted_index.consists | 123 |
| abstract_inverted_index.contexts | 50 |
| abstract_inverted_index.directly | 103 |
| abstract_inverted_index.dominate | 71 |
| abstract_inverted_index.inherits | 129 |
| abstract_inverted_index.instance | 204 |
| abstract_inverted_index.position | 59 |
| abstract_inverted_index.previous | 185 |
| abstract_inverted_index.recently | 6 |
| abstract_inverted_index.semantic | 207 |
| abstract_inverted_index.sharing, | 142 |
| abstract_inverted_index.weights; | 74 |
| abstract_inverted_index.FCViT-S12 | 163 |
| abstract_inverted_index.Motivated | 89 |
| abstract_inverted_index.ResT-Lite | 167 |
| abstract_inverted_index.attention | 18, 45, 64, 73, 84, 134 |
| abstract_inverted_index.available | 214 |
| abstract_inverted_index.including | 138 |
| abstract_inverted_index.integrate | 106 |
| abstract_inverted_index.knowledge | 77 |
| abstract_inverted_index.mechanism | 135 |
| abstract_inverted_index.modeling, | 148 |
| abstract_inverted_index.promising | 196 |
| abstract_inverted_index.property, | 140 |
| abstract_inverted_index.responses | 24 |
| abstract_inverted_index.resulting | 113 |
| abstract_inverted_index.consistent | 49 |
| abstract_inverted_index.detection, | 203 |
| abstract_inverted_index.downstream | 199 |
| abstract_inverted_index.generalize | 94 |
| abstract_inverted_index.insightful | 14 |
| abstract_inverted_index.long-range | 146 |
| abstract_inverted_index.mechanism. | 19 |
| abstract_inverted_index.regardless | 54 |
| abstract_inverted_index.revisiting | 21 |
| abstract_inverted_index.FCViT-based | 192 |
| abstract_inverted_index.Transformer | 119 |
| abstract_inverted_index.demonstrate | 152, 195 |
| abstract_inverted_index.empirically | 28 |
| abstract_inverted_index.formulation | 96 |
| abstract_inverted_index.interesting | 31 |
| abstract_inverted_index.introducing | 75 |
| abstract_inverted_index.outperforms | 164 |
| abstract_inverted_index.parameters, | 161 |
| abstract_inverted_index.parameters. | 191 |
| abstract_inverted_index.Experimental | 150 |
| abstract_inverted_index.ImageNet-1K. | 173 |
| abstract_inverted_index.Transformers | 1, 35 |
| abstract_inverted_index.architecture | 15 |
| abstract_inverted_index.performance. | 88 |
| abstract_inverted_index.Convolutional | 117 |
| abstract_inverted_index.Transformers, | 26 |
| abstract_inverted_index.convolutional | 125 |
| abstract_inverted_index.convolutions, | 137 |
| abstract_inverted_index.convolutions. | 111 |
| abstract_inverted_index.effectiveness | 154 |
| abstract_inverted_index.intrinsically | 67 |
| abstract_inverted_index.observations, | 92 |
| abstract_inverted_index.segmentation, | 205 |
| abstract_inverted_index.segmentation. | 208 |
| abstract_inverted_index.self-attention | 23, 95 |
| abstract_inverted_index.queryirrelevant | 38, 100 |
| abstract_inverted_index.transferability | 197 |
| abstract_inverted_index.state-of-the-art | 186 |
| abstract_inverted_index.head-irrelevant). | 61 |
| abstract_inverted_index.https://github.com/ma-xu/FCViT. | 216 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile |