A CMA-ES-Based Adversarial Attack on Black-Box Deep Neural Networks Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2956553
Deep neural networks(DNNs) are widely used in AI-controlled Cyber-Physical Systems (CPS) to controll cars, robotics, water treatment plants and railways. However, DNNs have vulnerabilities to well-designed input samples that are called adversarial examples. Adversary attack is one of the important techniques for detecting and improving the security of neural networks. Existing attacks, including state-of-the-art black-box attack have a lower success rate and make invalid queries that are not beneficial to obtain the direction of generating adversarial examples. For these reasons, this paper proposed a CMA-ES-based adversarial attack on black-box DNNs. Firstly, an efficient method to reduce the number of invalid queries is introduced. Secondly, a black-box attack of generating adversarial examples to fit a high-dimensional independent Gaussian distribution of the local solution space is proposed. Finally, a new CMA-based perturbation compression method is applied to make the process of reducing perturbation smoother. Experimental results on ImageNet classifiers show that the proposed attack has a higher success-rate than the state-of-the-art black-box attack but reduce the number of queries by 30% equally.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2956553
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08917642.pdf
- OA Status
- gold
- Cited By
- 7
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2993234371
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2993234371Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2956553Digital Object Identifier
- Title
-
A CMA-ES-Based Adversarial Attack on Black-Box Deep Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Xiaohui Kuang, Hongyi Liu, Ye Wang, Qikun Zhang, Quanxin Zhang, Jun ZhengList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2956553Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08917642.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08917642.pdfDirect OA link when available
- Concepts
-
Adversarial system, Computer science, Deep neural networks, Black box, Adversary, Artificial neural network, Artificial intelligence, Machine learning, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2023: 2, 2021: 2, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2993234371 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2956553 |
| ids.doi | https://doi.org/10.1109/access.2019.2956553 |
| ids.mag | 2993234371 |
| ids.openalex | https://openalex.org/W2993234371 |
| fwci | 0.46085324 |
| type | article |
| title | A CMA-ES-Based Adversarial Attack on Black-Box Deep Neural Networks |
| awards[0].id | https://openalex.org/G4117978028 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61772477 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G2123043084 |
| awards[1].funder_id | https://openalex.org/F4320323845 |
| awards[1].display_name | |
| awards[1].funder_award_id | 162300410322 |
| awards[1].funder_display_name | Natural Science Foundation of Henan Province |
| awards[2].id | https://openalex.org/G1014751129 |
| awards[2].funder_id | https://openalex.org/F4320335777 |
| awards[2].display_name | |
| awards[2].funder_award_id | 2018YFB1004402 |
| awards[2].funder_display_name | National Key Research and Development Program of China |
| awards[3].id | https://openalex.org/G7580715247 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 61876019 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G1422677142 |
| awards[4].funder_id | https://openalex.org/F4320322919 |
| awards[4].display_name | |
| awards[4].funder_award_id | 4172053 |
| awards[4].funder_display_name | Natural Science Foundation of Beijing Municipality |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 172947 |
| biblio.first_page | 172938 |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11241 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.96670001745224 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Advanced Malware Detection Techniques |
| topics[2].id | https://openalex.org/T11515 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9585000276565552 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Bacillus and Francisella bacterial research |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322919 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Beijing Municipality |
| funders[2].id | https://openalex.org/F4320323845 |
| funders[2].ror | |
| funders[2].display_name | Natural Science Foundation of Henan Province |
| funders[3].id | https://openalex.org/F4320335777 |
| funders[3].ror | |
| funders[3].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C37736160 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8760219812393188 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[0].display_name | Adversarial system |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7943167686462402 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2984842247 |
| concepts[2].level | 3 |
| concepts[2].score | 0.7736398577690125 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep neural networks |
| concepts[3].id | https://openalex.org/C94966114 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6742057204246521 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q29256 |
| concepts[3].display_name | Black box |
| concepts[4].id | https://openalex.org/C41065033 |
| concepts[4].level | 2 |
| concepts[4].score | 0.62809157371521 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2825412 |
| concepts[4].display_name | Adversary |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.580199658870697 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5604730248451233 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36592280864715576 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.14466631412506104 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/adversarial-system |
| keywords[0].score | 0.8760219812393188 |
| keywords[0].display_name | Adversarial system |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7943167686462402 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[2].score | 0.7736398577690125 |
| keywords[2].display_name | Deep neural networks |
| keywords[3].id | https://openalex.org/keywords/black-box |
| keywords[3].score | 0.6742057204246521 |
| keywords[3].display_name | Black box |
| keywords[4].id | https://openalex.org/keywords/adversary |
| keywords[4].score | 0.62809157371521 |
| keywords[4].display_name | Adversary |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.580199658870697 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5604730248451233 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.36592280864715576 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/computer-security |
| keywords[8].score | 0.14466631412506104 |
| keywords[8].display_name | Computer security |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2956553 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08917642.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2956553 |
| locations[1].id | pmh:oai:doaj.org/article:a702e56d302e4867983d9670f72980ba |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 7, Pp 172938-172947 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/a702e56d302e4867983d9670f72980ba |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5053431750 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3816-402X |
| authorships[0].author.display_name | Xiaohui Kuang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].raw_affiliation_string | National Key Laboratory of Science and Technology on Information System Security, Beijing, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I125839683 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Computer Science, Beijing Institute of Technology, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I125839683 |
| authorships[0].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing Institute of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xiaohui Kuang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | National Key Laboratory of Science and Technology on Information System Security, Beijing, China, School of Computer Science, Beijing Institute of Technology, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5101641723 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3651-6960 |
| authorships[1].author.display_name | Hongyi Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Software and Microelectronics, Peking University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I20231570 |
| authorships[1].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Peking University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongyi Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Software and Microelectronics, Peking University, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5100423419 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7024-0067 |
| authorships[2].author.display_name | Ye Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210120069 |
| authorships[2].affiliations[0].raw_affiliation_string | Development and Service Center for Science and Technology Talents, Ministry of Science Technology (MoST), Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210120069 |
| authorships[2].institutions[0].ror | https://ror.org/027s68j25 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210120069, https://openalex.org/I4210127390 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Ministry of Science and Technology of the People's Republic of China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ye Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Development and Service Center for Science and Technology Talents, Ministry of Science Technology (MoST), Beijing, China |
| authorships[3].author.id | https://openalex.org/A5103139498 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Qikun Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I23171815 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China |
| authorships[3].institutions[0].id | https://openalex.org/I23171815 |
| authorships[3].institutions[0].ror | https://ror.org/05fwr8z16 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I23171815 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhengzhou University of Light Industry |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Qikun Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer and Communication Engineering, Zhengzhou University of Light Industry, Zhengzhou, China |
| authorships[4].author.id | https://openalex.org/A5017675981 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5094-7388 |
| authorships[4].author.display_name | Quanxin Zhang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science, Beijing Institute of Technology, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I125839683 |
| authorships[4].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing Institute of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Quanxin Zhang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science, Beijing Institute of Technology, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5102005398 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1947-0921 |
| authorships[5].author.display_name | Jun Zheng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I125839683 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Computer Science, Beijing Institute of Technology, Beijing, China |
| authorships[5].institutions[0].id | https://openalex.org/I125839683 |
| authorships[5].institutions[0].ror | https://ror.org/01skt4w74 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I125839683, https://openalex.org/I890469752 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing Institute of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jun Zheng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Computer Science, Beijing Institute of Technology, Beijing, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08917642.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A CMA-ES-Based Adversarial Attack on Black-Box Deep Neural Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W4320018150, https://openalex.org/W4239582170, https://openalex.org/W2918664383, https://openalex.org/W106056076, https://openalex.org/W4320855730, https://openalex.org/W2135200719, https://openalex.org/W2950183588, https://openalex.org/W3080754722, https://openalex.org/W3093978547, https://openalex.org/W2953536436 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2019.2956553 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08917642.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2956553 |
| primary_location.id | doi:10.1109/access.2019.2956553 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08917642.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2956553 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2789264846, https://openalex.org/W2792913437, https://openalex.org/W2767072221, https://openalex.org/W2955415771, https://openalex.org/W6702989015, https://openalex.org/W2928294389, https://openalex.org/W2973442392, https://openalex.org/W2930249865, https://openalex.org/W6640425456, https://openalex.org/W6719080892, https://openalex.org/W2774644650, https://openalex.org/W2620038827, https://openalex.org/W2603766943, https://openalex.org/W6731927902, https://openalex.org/W2612637113, https://openalex.org/W2765424254, https://openalex.org/W6746608116, https://openalex.org/W2166160300, https://openalex.org/W2790975052, https://openalex.org/W2814329861, https://openalex.org/W2810651661, https://openalex.org/W2948487788, https://openalex.org/W6748475379, https://openalex.org/W2910143551, https://openalex.org/W2180612164, https://openalex.org/W2574022511, https://openalex.org/W2243397390, https://openalex.org/W2963857521, https://openalex.org/W1932198206, https://openalex.org/W2964082701, https://openalex.org/W2618043096, https://openalex.org/W6736207377, https://openalex.org/W6737043114, https://openalex.org/W6639927594, https://openalex.org/W2791853684, https://openalex.org/W2901178374, https://openalex.org/W3103557498, https://openalex.org/W2570685808, https://openalex.org/W2963070423, https://openalex.org/W1945616565, https://openalex.org/W2963744840, https://openalex.org/W1899185266, https://openalex.org/W2607219512, https://openalex.org/W4383466480, https://openalex.org/W2963143631, https://openalex.org/W4324106947, https://openalex.org/W4300511536 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 57, 83, 104, 113, 126, 153 |
| abstract_inverted_index.an | 91 |
| abstract_inverted_index.by | 167 |
| abstract_inverted_index.in | 6 |
| abstract_inverted_index.is | 35, 101, 123, 132 |
| abstract_inverted_index.of | 37, 47, 73, 98, 107, 118, 138, 165 |
| abstract_inverted_index.on | 87, 144 |
| abstract_inverted_index.to | 11, 24, 69, 94, 111, 134 |
| abstract_inverted_index.30% | 168 |
| abstract_inverted_index.For | 77 |
| abstract_inverted_index.and | 18, 43, 61 |
| abstract_inverted_index.are | 3, 29, 66 |
| abstract_inverted_index.but | 161 |
| abstract_inverted_index.fit | 112 |
| abstract_inverted_index.for | 41 |
| abstract_inverted_index.has | 152 |
| abstract_inverted_index.new | 127 |
| abstract_inverted_index.not | 67 |
| abstract_inverted_index.one | 36 |
| abstract_inverted_index.the | 38, 45, 71, 96, 119, 136, 149, 157, 163 |
| abstract_inverted_index.DNNs | 21 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.have | 22, 56 |
| abstract_inverted_index.make | 62, 135 |
| abstract_inverted_index.rate | 60 |
| abstract_inverted_index.show | 147 |
| abstract_inverted_index.than | 156 |
| abstract_inverted_index.that | 28, 65, 148 |
| abstract_inverted_index.this | 80 |
| abstract_inverted_index.used | 5 |
| abstract_inverted_index.(CPS) | 10 |
| abstract_inverted_index.DNNs. | 89 |
| abstract_inverted_index.cars, | 13 |
| abstract_inverted_index.input | 26 |
| abstract_inverted_index.local | 120 |
| abstract_inverted_index.lower | 58 |
| abstract_inverted_index.paper | 81 |
| abstract_inverted_index.space | 122 |
| abstract_inverted_index.these | 78 |
| abstract_inverted_index.water | 15 |
| abstract_inverted_index.attack | 34, 55, 86, 106, 151, 160 |
| abstract_inverted_index.called | 30 |
| abstract_inverted_index.higher | 154 |
| abstract_inverted_index.method | 93, 131 |
| abstract_inverted_index.neural | 1, 48 |
| abstract_inverted_index.number | 97, 164 |
| abstract_inverted_index.obtain | 70 |
| abstract_inverted_index.plants | 17 |
| abstract_inverted_index.reduce | 95, 162 |
| abstract_inverted_index.widely | 4 |
| abstract_inverted_index.Systems | 9 |
| abstract_inverted_index.applied | 133 |
| abstract_inverted_index.invalid | 63, 99 |
| abstract_inverted_index.process | 137 |
| abstract_inverted_index.queries | 64, 100, 166 |
| abstract_inverted_index.results | 143 |
| abstract_inverted_index.samples | 27 |
| abstract_inverted_index.success | 59 |
| abstract_inverted_index.Existing | 50 |
| abstract_inverted_index.Finally, | 125 |
| abstract_inverted_index.Firstly, | 90 |
| abstract_inverted_index.Gaussian | 116 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.ImageNet | 145 |
| abstract_inverted_index.attacks, | 51 |
| abstract_inverted_index.controll | 12 |
| abstract_inverted_index.equally. | 169 |
| abstract_inverted_index.examples | 110 |
| abstract_inverted_index.proposed | 82, 150 |
| abstract_inverted_index.reasons, | 79 |
| abstract_inverted_index.reducing | 139 |
| abstract_inverted_index.security | 46 |
| abstract_inverted_index.solution | 121 |
| abstract_inverted_index.Adversary | 33 |
| abstract_inverted_index.CMA-based | 128 |
| abstract_inverted_index.Secondly, | 103 |
| abstract_inverted_index.black-box | 54, 88, 105, 159 |
| abstract_inverted_index.detecting | 42 |
| abstract_inverted_index.direction | 72 |
| abstract_inverted_index.efficient | 92 |
| abstract_inverted_index.examples. | 32, 76 |
| abstract_inverted_index.important | 39 |
| abstract_inverted_index.improving | 44 |
| abstract_inverted_index.including | 52 |
| abstract_inverted_index.networks. | 49 |
| abstract_inverted_index.proposed. | 124 |
| abstract_inverted_index.railways. | 19 |
| abstract_inverted_index.robotics, | 14 |
| abstract_inverted_index.smoother. | 141 |
| abstract_inverted_index.treatment | 16 |
| abstract_inverted_index.beneficial | 68 |
| abstract_inverted_index.generating | 74, 108 |
| abstract_inverted_index.techniques | 40 |
| abstract_inverted_index.adversarial | 31, 75, 85, 109 |
| abstract_inverted_index.classifiers | 146 |
| abstract_inverted_index.compression | 130 |
| abstract_inverted_index.independent | 115 |
| abstract_inverted_index.introduced. | 102 |
| abstract_inverted_index.CMA-ES-based | 84 |
| abstract_inverted_index.Experimental | 142 |
| abstract_inverted_index.distribution | 117 |
| abstract_inverted_index.perturbation | 129, 140 |
| abstract_inverted_index.success-rate | 155 |
| abstract_inverted_index.AI-controlled | 7 |
| abstract_inverted_index.well-designed | 25 |
| abstract_inverted_index.Cyber-Physical | 8 |
| abstract_inverted_index.networks(DNNs) | 2 |
| abstract_inverted_index.vulnerabilities | 23 |
| abstract_inverted_index.high-dimensional | 114 |
| abstract_inverted_index.state-of-the-art | 53, 158 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.72820532 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |