A co-learning method to utilize optical images and photogrammetric point clouds for building extraction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1016/j.jag.2022.103165
Although deep learning techniques have brought unprecedented accuracy to automatic building extraction, several main issues still constitute an obstacle to effective and practical applications. The industry is eager for higher accuracy and more flexible data usage. In this paper, we present a co-learning framework applicable to building extraction from optical images and photogrammetric point clouds, which can take the advantage of 2D/3D multimodality data. Instead of direct information fusion, our co-learning framework adaptively exploits knowledge from another modality during the training phase with a soft connection, via a predefined loss function. Compared to conventional data fusion, this method is more flexible, as it is not mandatory to provide multimodality data in the test phase. We propose two types of co-learning: a standard version and an enhanced version, depending on whether unlabeled training data are employed. Experimental results from two data sets show that the methods we present can enhance the performance of both image and point cloud networks in few-shot tasks, as well as image networks when applying fully labeled training data sets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.jag.2022.103165
- OA Status
- gold
- Cited By
- 22
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4313399119
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4313399119Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.jag.2022.103165Digital Object Identifier
- Title
-
A co-learning method to utilize optical images and photogrammetric point clouds for building extractionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-31Full publication date if available
- Authors
-
Yuxing Xie, Jiaojiao Tian, Xiao Xiang ZhuList of authors in order
- Landing page
-
https://doi.org/10.1016/j.jag.2022.103165Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.jag.2022.103165Direct OA link when available
- Concepts
-
Point cloud, Computer science, Photogrammetry, Artificial intelligence, Multimodality, Point (geometry), Exploit, Image (mathematics), Computer vision, Function (biology), Data mining, Machine learning, Mathematics, Biology, World Wide Web, Geometry, Computer security, Evolutionary biologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
22Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 10, 2023: 6Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4313399119 |
|---|---|
| doi | https://doi.org/10.1016/j.jag.2022.103165 |
| ids.doi | https://doi.org/10.1016/j.jag.2022.103165 |
| ids.openalex | https://openalex.org/W4313399119 |
| fwci | 7.25685044 |
| type | article |
| title | A co-learning method to utilize optical images and photogrammetric point clouds for building extraction |
| biblio.issue | |
| biblio.volume | 116 |
| biblio.last_page | 103165 |
| biblio.first_page | 103165 |
| topics[0].id | https://openalex.org/T11211 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1907 |
| topics[0].subfield.display_name | Geology |
| topics[0].display_name | 3D Surveying and Cultural Heritage |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T11606 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9866999983787537 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Infrastructure Maintenance and Monitoring |
| is_xpac | False |
| apc_list.value | 2250 |
| apc_list.currency | USD |
| apc_list.value_usd | 2250 |
| apc_paid.value | 1470 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 1585 |
| concepts[0].id | https://openalex.org/C131979681 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7338681221008301 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[0].display_name | Point cloud |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6835219860076904 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C117455697 |
| concepts[2].level | 2 |
| concepts[2].score | 0.655128538608551 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190149 |
| concepts[2].display_name | Photogrammetry |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.591321587562561 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C2780910867 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5184261798858643 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1952416 |
| concepts[4].display_name | Multimodality |
| concepts[5].id | https://openalex.org/C28719098 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5159200429916382 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[5].display_name | Point (geometry) |
| concepts[6].id | https://openalex.org/C165696696 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49825263023376465 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11287 |
| concepts[6].display_name | Exploit |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.44779136776924133 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4358797073364258 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C14036430 |
| concepts[9].level | 2 |
| concepts[9].score | 0.41638386249542236 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[9].display_name | Function (biology) |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3834850490093231 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36485403776168823 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.09658610820770264 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C136764020 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[14].display_name | World Wide Web |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C38652104 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[16].display_name | Computer security |
| concepts[17].id | https://openalex.org/C78458016 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[17].display_name | Evolutionary biology |
| keywords[0].id | https://openalex.org/keywords/point-cloud |
| keywords[0].score | 0.7338681221008301 |
| keywords[0].display_name | Point cloud |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6835219860076904 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/photogrammetry |
| keywords[2].score | 0.655128538608551 |
| keywords[2].display_name | Photogrammetry |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.591321587562561 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/multimodality |
| keywords[4].score | 0.5184261798858643 |
| keywords[4].display_name | Multimodality |
| keywords[5].id | https://openalex.org/keywords/point |
| keywords[5].score | 0.5159200429916382 |
| keywords[5].display_name | Point (geometry) |
| keywords[6].id | https://openalex.org/keywords/exploit |
| keywords[6].score | 0.49825263023376465 |
| keywords[6].display_name | Exploit |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.44779136776924133 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.4358797073364258 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/function |
| keywords[9].score | 0.41638386249542236 |
| keywords[9].display_name | Function (biology) |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.3834850490093231 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.36485403776168823 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.09658610820770264 |
| keywords[12].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1016/j.jag.2022.103165 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210179989 |
| locations[0].source.issn | 1569-8432, 1872-826X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1569-8432 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| locations[0].landing_page_url | https://doi.org/10.1016/j.jag.2022.103165 |
| locations[1].id | pmh:oai:elib.dlr.de:192609 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196266 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | elib (German Aerospace Center) |
| locations[1].source.host_organization | https://openalex.org/I2898391981 |
| locations[1].source.host_organization_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| locations[1].source.host_organization_lineage | https://openalex.org/I2898391981 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Zeitschriftenbeitrag |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| locations[2].id | pmh:oai:doaj.org/article:6ceac0d48c2142c8adcf729d071eb5f7 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | International Journal of Applied Earth Observations and Geoinformation, Vol 116, Iss , Pp 103165- (2023) |
| locations[2].landing_page_url | https://doaj.org/article/6ceac0d48c2142c8adcf729d071eb5f7 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5067473682 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6408-5109 |
| authorships[0].author.display_name | Yuxing Xie |
| authorships[0].countries | DE |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2898391981 |
| authorships[0].affiliations[0].raw_affiliation_string | The Remote Sensing Technology Institute, German Aerospace Center (DLR), Muenchener Strasse 20, Wessling, 82234, Germany |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I62916508 |
| authorships[0].affiliations[1].raw_affiliation_string | Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany |
| authorships[0].institutions[0].id | https://openalex.org/I2898391981 |
| authorships[0].institutions[0].ror | https://ror.org/04bwf3e34 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2898391981 |
| authorships[0].institutions[0].country_code | DE |
| authorships[0].institutions[0].display_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| authorships[0].institutions[1].id | https://openalex.org/I62916508 |
| authorships[0].institutions[1].ror | https://ror.org/02kkvpp62 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I62916508 |
| authorships[0].institutions[1].country_code | DE |
| authorships[0].institutions[1].display_name | Technical University of Munich |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yuxing Xie |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany, The Remote Sensing Technology Institute, German Aerospace Center (DLR), Muenchener Strasse 20, Wessling, 82234, Germany |
| authorships[1].author.id | https://openalex.org/A5083368958 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8407-5098 |
| authorships[1].author.display_name | Jiaojiao Tian |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2898391981 |
| authorships[1].affiliations[0].raw_affiliation_string | The Remote Sensing Technology Institute, German Aerospace Center (DLR), Muenchener Strasse 20, Wessling, 82234, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I2898391981 |
| authorships[1].institutions[0].ror | https://ror.org/04bwf3e34 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I1305996414, https://openalex.org/I2898391981 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiaojiao Tian |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | The Remote Sensing Technology Institute, German Aerospace Center (DLR), Muenchener Strasse 20, Wessling, 82234, Germany |
| authorships[2].author.id | https://openalex.org/A5068384981 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5530-3613 |
| authorships[2].author.display_name | Xiao Xiang Zhu |
| authorships[2].countries | DE |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[2].affiliations[0].raw_affiliation_string | Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany |
| authorships[2].institutions[0].id | https://openalex.org/I62916508 |
| authorships[2].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[2].institutions[0].country_code | DE |
| authorships[2].institutions[0].display_name | Technical University of Munich |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Xiao Xiang Zhu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Data Science in Earth Observation, Technical University of Munich, Munich, 80333, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.jag.2022.103165 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A co-learning method to utilize optical images and photogrammetric point clouds for building extraction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11211 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1907 |
| primary_topic.subfield.display_name | Geology |
| primary_topic.display_name | 3D Surveying and Cultural Heritage |
| related_works | https://openalex.org/W4205899436, https://openalex.org/W17155033, https://openalex.org/W2462138927, https://openalex.org/W3207760230, https://openalex.org/W1496222301, https://openalex.org/W3111427900, https://openalex.org/W4302009627, https://openalex.org/W1590307681, https://openalex.org/W2536018345, https://openalex.org/W4312814274 |
| cited_by_count | 22 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 6 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.jag.2022.103165 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210179989 |
| best_oa_location.source.issn | 1569-8432, 1872-826X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1569-8432 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.jag.2022.103165 |
| primary_location.id | doi:10.1016/j.jag.2022.103165 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210179989 |
| primary_location.source.issn | 1569-8432, 1872-826X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1569-8432 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | International Journal of Applied Earth Observation and Geoinformation |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Applied Earth Observation and Geoinformation |
| primary_location.landing_page_url | https://doi.org/10.1016/j.jag.2022.103165 |
| publication_date | 2022-12-31 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3017171351, https://openalex.org/W2619383789, https://openalex.org/W2888889084, https://openalex.org/W2963125977, https://openalex.org/W6705033035, https://openalex.org/W2963182550, https://openalex.org/W3180799764, https://openalex.org/W2194775991, https://openalex.org/W6773943020, https://openalex.org/W3009401626, https://openalex.org/W3035750252, https://openalex.org/W6800470365, https://openalex.org/W4223499063, https://openalex.org/W2938425859, https://openalex.org/W3158097430, https://openalex.org/W3176404283, https://openalex.org/W1909515874, https://openalex.org/W2950642167, https://openalex.org/W3184679245, https://openalex.org/W6639824700, https://openalex.org/W2549994478, https://openalex.org/W2994434065, https://openalex.org/W6801892685, https://openalex.org/W3131937156, https://openalex.org/W2990613095, https://openalex.org/W2026665610, https://openalex.org/W2021610926, https://openalex.org/W2603633342, https://openalex.org/W2991488782, https://openalex.org/W3041049917, https://openalex.org/W3144259467, https://openalex.org/W2761129952, https://openalex.org/W3036595416, https://openalex.org/W6800493541, https://openalex.org/W3133524663, https://openalex.org/W6802288883, https://openalex.org/W2982206001, https://openalex.org/W6779101013, https://openalex.org/W3104035745, https://openalex.org/W3195858154, https://openalex.org/W3199747600, https://openalex.org/W3035003500, https://openalex.org/W3201091899, https://openalex.org/W3104038589, https://openalex.org/W4205423437, https://openalex.org/W3202370946 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 41, 83, 87, 120 |
| abstract_inverted_index.In | 36 |
| abstract_inverted_index.We | 114 |
| abstract_inverted_index.an | 17, 124 |
| abstract_inverted_index.as | 101, 161, 163 |
| abstract_inverted_index.in | 110, 158 |
| abstract_inverted_index.is | 26, 98, 103 |
| abstract_inverted_index.it | 102 |
| abstract_inverted_index.of | 60, 65, 118, 151 |
| abstract_inverted_index.on | 128 |
| abstract_inverted_index.to | 8, 19, 45, 92, 106 |
| abstract_inverted_index.we | 39, 145 |
| abstract_inverted_index.The | 24 |
| abstract_inverted_index.and | 21, 31, 51, 123, 154 |
| abstract_inverted_index.are | 133 |
| abstract_inverted_index.can | 56, 147 |
| abstract_inverted_index.for | 28 |
| abstract_inverted_index.not | 104 |
| abstract_inverted_index.our | 69 |
| abstract_inverted_index.the | 58, 79, 111, 143, 149 |
| abstract_inverted_index.two | 116, 138 |
| abstract_inverted_index.via | 86 |
| abstract_inverted_index.both | 152 |
| abstract_inverted_index.data | 34, 94, 109, 132, 139, 171 |
| abstract_inverted_index.deep | 1 |
| abstract_inverted_index.from | 48, 75, 137 |
| abstract_inverted_index.have | 4 |
| abstract_inverted_index.loss | 89 |
| abstract_inverted_index.main | 13 |
| abstract_inverted_index.more | 32, 99 |
| abstract_inverted_index.sets | 140 |
| abstract_inverted_index.show | 141 |
| abstract_inverted_index.soft | 84 |
| abstract_inverted_index.take | 57 |
| abstract_inverted_index.test | 112 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.this | 37, 96 |
| abstract_inverted_index.well | 162 |
| abstract_inverted_index.when | 166 |
| abstract_inverted_index.with | 82 |
| abstract_inverted_index.2D/3D | 61 |
| abstract_inverted_index.cloud | 156 |
| abstract_inverted_index.data. | 63 |
| abstract_inverted_index.eager | 27 |
| abstract_inverted_index.fully | 168 |
| abstract_inverted_index.image | 153, 164 |
| abstract_inverted_index.phase | 81 |
| abstract_inverted_index.point | 53, 155 |
| abstract_inverted_index.sets. | 172 |
| abstract_inverted_index.still | 15 |
| abstract_inverted_index.types | 117 |
| abstract_inverted_index.which | 55 |
| abstract_inverted_index.direct | 66 |
| abstract_inverted_index.during | 78 |
| abstract_inverted_index.higher | 29 |
| abstract_inverted_index.images | 50 |
| abstract_inverted_index.issues | 14 |
| abstract_inverted_index.method | 97 |
| abstract_inverted_index.paper, | 38 |
| abstract_inverted_index.phase. | 113 |
| abstract_inverted_index.tasks, | 160 |
| abstract_inverted_index.usage. | 35 |
| abstract_inverted_index.Instead | 64 |
| abstract_inverted_index.another | 76 |
| abstract_inverted_index.brought | 5 |
| abstract_inverted_index.clouds, | 54 |
| abstract_inverted_index.enhance | 148 |
| abstract_inverted_index.fusion, | 68, 95 |
| abstract_inverted_index.labeled | 169 |
| abstract_inverted_index.methods | 144 |
| abstract_inverted_index.optical | 49 |
| abstract_inverted_index.present | 40, 146 |
| abstract_inverted_index.propose | 115 |
| abstract_inverted_index.provide | 107 |
| abstract_inverted_index.results | 136 |
| abstract_inverted_index.several | 12 |
| abstract_inverted_index.version | 122 |
| abstract_inverted_index.whether | 129 |
| abstract_inverted_index.Although | 0 |
| abstract_inverted_index.Compared | 91 |
| abstract_inverted_index.accuracy | 7, 30 |
| abstract_inverted_index.applying | 167 |
| abstract_inverted_index.building | 10, 46 |
| abstract_inverted_index.enhanced | 125 |
| abstract_inverted_index.exploits | 73 |
| abstract_inverted_index.few-shot | 159 |
| abstract_inverted_index.flexible | 33 |
| abstract_inverted_index.industry | 25 |
| abstract_inverted_index.learning | 2 |
| abstract_inverted_index.modality | 77 |
| abstract_inverted_index.networks | 157, 165 |
| abstract_inverted_index.obstacle | 18 |
| abstract_inverted_index.standard | 121 |
| abstract_inverted_index.training | 80, 131, 170 |
| abstract_inverted_index.version, | 126 |
| abstract_inverted_index.advantage | 59 |
| abstract_inverted_index.automatic | 9 |
| abstract_inverted_index.depending | 127 |
| abstract_inverted_index.effective | 20 |
| abstract_inverted_index.employed. | 134 |
| abstract_inverted_index.flexible, | 100 |
| abstract_inverted_index.framework | 43, 71 |
| abstract_inverted_index.function. | 90 |
| abstract_inverted_index.knowledge | 74 |
| abstract_inverted_index.mandatory | 105 |
| abstract_inverted_index.practical | 22 |
| abstract_inverted_index.unlabeled | 130 |
| abstract_inverted_index.adaptively | 72 |
| abstract_inverted_index.applicable | 44 |
| abstract_inverted_index.constitute | 16 |
| abstract_inverted_index.extraction | 47 |
| abstract_inverted_index.predefined | 88 |
| abstract_inverted_index.techniques | 3 |
| abstract_inverted_index.co-learning | 42, 70 |
| abstract_inverted_index.connection, | 85 |
| abstract_inverted_index.extraction, | 11 |
| abstract_inverted_index.information | 67 |
| abstract_inverted_index.performance | 150 |
| abstract_inverted_index.Experimental | 135 |
| abstract_inverted_index.co-learning: | 119 |
| abstract_inverted_index.conventional | 93 |
| abstract_inverted_index.applications. | 23 |
| abstract_inverted_index.multimodality | 62, 108 |
| abstract_inverted_index.unprecedented | 6 |
| abstract_inverted_index.photogrammetric | 52 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5067473682 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I2898391981, https://openalex.org/I62916508 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.96916504 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |