A coding perspective on deep latent variable models Article Swipe
In my thesis "A Coding Perspective on Deep Latent Variable Models", we discuss how statistical inference in Deep Latent Variable Models (DLVMs) relates to coding. In particular, we examine the minimum deception length (MDL) principle as a guide for statistical inference. In this context, we explore its relation to Bayesian inference. We shall see that despite both leading to similar algorithms, the MDL principle allows us to make no assumption about the data generating process. We merely restrict ourselves to finding regularity in the observed data, where regularity is connected to the ability to compress. We thus find that learning DLVMs is equivalent to minimizing the cost for communicating (compressing) a set of observations. One common approach to communication is to send a hypothesis (or model), and subsequently the data misfit under the aforementioned model. This is known as the two-part code. In this thesis, we will mainly focus on the so-called Bayesian code -- a theoretically more effective code than the two-part code. Somewhat counter-intuitively, the Bayesian inference method will allow us to compute the code length without knowing the code nor the coding scheme that achieved this code length. The purpose of this thesis is to close this gap by developing respective coding schemes. We will, inspired and guided by the MDL principle, look for the codes that achieve the code length predicted by MDL. A special focus lies on differentiable functions, and more precisely, deep neural networks, learned by way of large quantities of high dimensional data. We will investigate model compression as well as source compression through the lens of the MDL principle.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://dare.uva.nl/personal/pure/en/publications/a-coding-perspective-on-deep-latent-variable-models(2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54).html
- OA Status
- green
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3092183384
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3092183384Canonical identifier for this work in OpenAlex
- Title
-
A coding perspective on deep latent variable modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-01-01Full publication date if available
- Authors
-
Karen UllrichList of authors in order
- Landing page
-
https://dare.uva.nl/personal/pure/en/publications/a-coding-perspective-on-deep-latent-variable-models(2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54).htmlPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://dare.uva.nl/personal/pure/en/publications/a-coding-perspective-on-deep-latent-variable-models(2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54).htmlDirect OA link when available
- Concepts
-
Minimum description length, Computer science, Inference, Latent variable, Theoretical computer science, Artificial intelligence, Source code, Code (set theory), Algorithm, Bayesian inference, Bayesian probability, Machine learning, Set (abstract data type), Programming language, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3092183384 |
|---|---|
| doi | |
| ids.mag | 3092183384 |
| ids.openalex | https://openalex.org/W3092183384 |
| fwci | 0.0 |
| type | article |
| title | A coding perspective on deep latent variable models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9815999865531921 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.979200005531311 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.963100016117096 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C87465248 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7641592025756836 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1417790 |
| concepts[0].display_name | Minimum description length |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5681184530258179 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776214188 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5049558281898499 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[2].display_name | Inference |
| concepts[3].id | https://openalex.org/C51167844 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4761626422405243 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q4422623 |
| concepts[3].display_name | Latent variable |
| concepts[4].id | https://openalex.org/C80444323 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4552631676197052 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[4].display_name | Theoretical computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4508384168148041 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C43126263 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4418693780899048 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q128751 |
| concepts[6].display_name | Source code |
| concepts[7].id | https://openalex.org/C2776760102 |
| concepts[7].level | 3 |
| concepts[7].score | 0.42734676599502563 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[7].display_name | Code (set theory) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.42289817333221436 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C160234255 |
| concepts[9].level | 3 |
| concepts[9].score | 0.41626033186912537 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q812535 |
| concepts[9].display_name | Bayesian inference |
| concepts[10].id | https://openalex.org/C107673813 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4051356613636017 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[10].display_name | Bayesian probability |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3315467834472656 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C177264268 |
| concepts[12].level | 2 |
| concepts[12].score | 0.21204107999801636 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[12].display_name | Set (abstract data type) |
| concepts[13].id | https://openalex.org/C199360897 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[13].display_name | Programming language |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/minimum-description-length |
| keywords[0].score | 0.7641592025756836 |
| keywords[0].display_name | Minimum description length |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5681184530258179 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/inference |
| keywords[2].score | 0.5049558281898499 |
| keywords[2].display_name | Inference |
| keywords[3].id | https://openalex.org/keywords/latent-variable |
| keywords[3].score | 0.4761626422405243 |
| keywords[3].display_name | Latent variable |
| keywords[4].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[4].score | 0.4552631676197052 |
| keywords[4].display_name | Theoretical computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4508384168148041 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/source-code |
| keywords[6].score | 0.4418693780899048 |
| keywords[6].display_name | Source code |
| keywords[7].id | https://openalex.org/keywords/code |
| keywords[7].score | 0.42734676599502563 |
| keywords[7].display_name | Code (set theory) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.42289817333221436 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/bayesian-inference |
| keywords[9].score | 0.41626033186912537 |
| keywords[9].display_name | Bayesian inference |
| keywords[10].id | https://openalex.org/keywords/bayesian-probability |
| keywords[10].score | 0.4051356613636017 |
| keywords[10].display_name | Bayesian probability |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3315467834472656 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/set |
| keywords[12].score | 0.21204107999801636 |
| keywords[12].display_name | Set (abstract data type) |
| language | en |
| locations[0].id | pmh:uvapub:oai:dare.uva.nl:publications/2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306401843 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Data Archiving and Networked Services (DANS) |
| locations[0].source.host_organization | https://openalex.org/I1322597698 |
| locations[0].source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| locations[0].source.host_organization_lineage | https://openalex.org/I1322597698 |
| locations[0].license | other-oa |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | info:eu-repo/semantics/doctoralthesis |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://dare.uva.nl/personal/pure/en/publications/a-coding-perspective-on-deep-latent-variable-models(2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54).html |
| locations[1].id | mag:3092183384 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://pure.uva.nl/ws/files/50173216/Thesis.pdf |
| authorships[0].author.id | https://openalex.org/A5058031547 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Karen Ullrich |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | K. Ullrich |
| authorships[0].is_corresponding | True |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dare.uva.nl/personal/pure/en/publications/a-coding-perspective-on-deep-latent-variable-models(2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54).html |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A coding perspective on deep latent variable models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T04:12:42.849631 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9815999865531921 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W2086694237, https://openalex.org/W2037518848, https://openalex.org/W1865714576, https://openalex.org/W2747039167, https://openalex.org/W3014266848, https://openalex.org/W2786772298, https://openalex.org/W2979915069, https://openalex.org/W2978648854, https://openalex.org/W3007431310, https://openalex.org/W3120103717, https://openalex.org/W2766438578, https://openalex.org/W2095897186, https://openalex.org/W1527691665, https://openalex.org/W2406385473, https://openalex.org/W3046618572, https://openalex.org/W2894867725, https://openalex.org/W2957780671, https://openalex.org/W2804553224, https://openalex.org/W2770992186, https://openalex.org/W140573599 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:uvapub:oai:dare.uva.nl:publications/2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306401843 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Data Archiving and Networked Services (DANS) |
| best_oa_location.source.host_organization | https://openalex.org/I1322597698 |
| best_oa_location.source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1322597698 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | info:eu-repo/semantics/doctoralthesis |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://dare.uva.nl/personal/pure/en/publications/a-coding-perspective-on-deep-latent-variable-models(2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54).html |
| primary_location.id | pmh:uvapub:oai:dare.uva.nl:publications/2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306401843 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Data Archiving and Networked Services (DANS) |
| primary_location.source.host_organization | https://openalex.org/I1322597698 |
| primary_location.source.host_organization_name | Royal Netherlands Academy of Arts and Sciences |
| primary_location.source.host_organization_lineage | https://openalex.org/I1322597698 |
| primary_location.license | other-oa |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | info:eu-repo/semantics/doctoralthesis |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://dare.uva.nl/personal/pure/en/publications/a-coding-perspective-on-deep-latent-variable-models(2d6e0b96-90d3-4683-bbbe-00d2a7f1dd54).html |
| publication_date | 2020-01-01 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 227 |
| abstract_inverted_index.a | 36, 110, 122, 155 |
| abstract_inverted_index."A | 3 |
| abstract_inverted_index.-- | 154 |
| abstract_inverted_index.In | 0, 25, 41, 142 |
| abstract_inverted_index.We | 51, 75, 95, 206, 250 |
| abstract_inverted_index.as | 35, 138, 255, 257 |
| abstract_inverted_index.by | 201, 211, 225, 241 |
| abstract_inverted_index.in | 16, 82 |
| abstract_inverted_index.is | 88, 101, 119, 136, 196 |
| abstract_inverted_index.my | 1 |
| abstract_inverted_index.no | 68 |
| abstract_inverted_index.of | 112, 193, 243, 246, 263 |
| abstract_inverted_index.on | 6, 149, 231 |
| abstract_inverted_index.to | 23, 48, 58, 66, 79, 90, 93, 103, 117, 120, 173, 197 |
| abstract_inverted_index.us | 65, 172 |
| abstract_inverted_index.we | 11, 27, 44, 145 |
| abstract_inverted_index.(or | 124 |
| abstract_inverted_index.MDL | 62, 213, 265 |
| abstract_inverted_index.One | 114 |
| abstract_inverted_index.The | 191 |
| abstract_inverted_index.and | 126, 209, 234 |
| abstract_inverted_index.for | 38, 107, 216 |
| abstract_inverted_index.gap | 200 |
| abstract_inverted_index.how | 13 |
| abstract_inverted_index.its | 46 |
| abstract_inverted_index.nor | 182 |
| abstract_inverted_index.see | 53 |
| abstract_inverted_index.set | 111 |
| abstract_inverted_index.the | 29, 61, 71, 83, 91, 105, 128, 132, 139, 150, 161, 166, 175, 180, 183, 212, 217, 221, 261, 264 |
| abstract_inverted_index.way | 242 |
| abstract_inverted_index.Deep | 7, 17 |
| abstract_inverted_index.MDL. | 226 |
| abstract_inverted_index.This | 135 |
| abstract_inverted_index.both | 56 |
| abstract_inverted_index.code | 153, 159, 176, 181, 189, 222 |
| abstract_inverted_index.cost | 106 |
| abstract_inverted_index.data | 72, 129 |
| abstract_inverted_index.deep | 237 |
| abstract_inverted_index.find | 97 |
| abstract_inverted_index.high | 247 |
| abstract_inverted_index.lens | 262 |
| abstract_inverted_index.lies | 230 |
| abstract_inverted_index.look | 215 |
| abstract_inverted_index.make | 67 |
| abstract_inverted_index.more | 157, 235 |
| abstract_inverted_index.send | 121 |
| abstract_inverted_index.than | 160 |
| abstract_inverted_index.that | 54, 98, 186, 219 |
| abstract_inverted_index.this | 42, 143, 188, 194, 199 |
| abstract_inverted_index.thus | 96 |
| abstract_inverted_index.well | 256 |
| abstract_inverted_index.will | 146, 170, 251 |
| abstract_inverted_index.(MDL) | 33 |
| abstract_inverted_index.DLVMs | 100 |
| abstract_inverted_index.about | 70 |
| abstract_inverted_index.allow | 171 |
| abstract_inverted_index.close | 198 |
| abstract_inverted_index.code. | 141, 163 |
| abstract_inverted_index.codes | 218 |
| abstract_inverted_index.data, | 85 |
| abstract_inverted_index.data. | 249 |
| abstract_inverted_index.focus | 148, 229 |
| abstract_inverted_index.guide | 37 |
| abstract_inverted_index.known | 137 |
| abstract_inverted_index.large | 244 |
| abstract_inverted_index.model | 253 |
| abstract_inverted_index.shall | 52 |
| abstract_inverted_index.under | 131 |
| abstract_inverted_index.where | 86 |
| abstract_inverted_index.will, | 207 |
| abstract_inverted_index.Coding | 4 |
| abstract_inverted_index.Latent | 8, 18 |
| abstract_inverted_index.Models | 20 |
| abstract_inverted_index.allows | 64 |
| abstract_inverted_index.coding | 184, 204 |
| abstract_inverted_index.common | 115 |
| abstract_inverted_index.guided | 210 |
| abstract_inverted_index.length | 32, 177, 223 |
| abstract_inverted_index.mainly | 147 |
| abstract_inverted_index.merely | 76 |
| abstract_inverted_index.method | 169 |
| abstract_inverted_index.misfit | 130 |
| abstract_inverted_index.model. | 134 |
| abstract_inverted_index.neural | 238 |
| abstract_inverted_index.scheme | 185 |
| abstract_inverted_index.source | 258 |
| abstract_inverted_index.thesis | 2, 195 |
| abstract_inverted_index.(DLVMs) | 21 |
| abstract_inverted_index.ability | 92 |
| abstract_inverted_index.achieve | 220 |
| abstract_inverted_index.coding. | 24 |
| abstract_inverted_index.compute | 174 |
| abstract_inverted_index.despite | 55 |
| abstract_inverted_index.discuss | 12 |
| abstract_inverted_index.examine | 28 |
| abstract_inverted_index.explore | 45 |
| abstract_inverted_index.finding | 80 |
| abstract_inverted_index.knowing | 179 |
| abstract_inverted_index.leading | 57 |
| abstract_inverted_index.learned | 240 |
| abstract_inverted_index.length. | 190 |
| abstract_inverted_index.minimum | 30 |
| abstract_inverted_index.model), | 125 |
| abstract_inverted_index.purpose | 192 |
| abstract_inverted_index.relates | 22 |
| abstract_inverted_index.similar | 59 |
| abstract_inverted_index.special | 228 |
| abstract_inverted_index.thesis, | 144 |
| abstract_inverted_index.through | 260 |
| abstract_inverted_index.without | 178 |
| abstract_inverted_index.Bayesian | 49, 152, 167 |
| abstract_inverted_index.Models", | 10 |
| abstract_inverted_index.Somewhat | 164 |
| abstract_inverted_index.Variable | 9, 19 |
| abstract_inverted_index.achieved | 187 |
| abstract_inverted_index.approach | 116 |
| abstract_inverted_index.context, | 43 |
| abstract_inverted_index.inspired | 208 |
| abstract_inverted_index.learning | 99 |
| abstract_inverted_index.observed | 84 |
| abstract_inverted_index.process. | 74 |
| abstract_inverted_index.relation | 47 |
| abstract_inverted_index.restrict | 77 |
| abstract_inverted_index.schemes. | 205 |
| abstract_inverted_index.two-part | 140, 162 |
| abstract_inverted_index.compress. | 94 |
| abstract_inverted_index.connected | 89 |
| abstract_inverted_index.deception | 31 |
| abstract_inverted_index.effective | 158 |
| abstract_inverted_index.inference | 15, 168 |
| abstract_inverted_index.networks, | 239 |
| abstract_inverted_index.ourselves | 78 |
| abstract_inverted_index.predicted | 224 |
| abstract_inverted_index.principle | 34, 63 |
| abstract_inverted_index.so-called | 151 |
| abstract_inverted_index.assumption | 69 |
| abstract_inverted_index.developing | 202 |
| abstract_inverted_index.equivalent | 102 |
| abstract_inverted_index.functions, | 233 |
| abstract_inverted_index.generating | 73 |
| abstract_inverted_index.hypothesis | 123 |
| abstract_inverted_index.inference. | 40, 50 |
| abstract_inverted_index.minimizing | 104 |
| abstract_inverted_index.precisely, | 236 |
| abstract_inverted_index.principle, | 214 |
| abstract_inverted_index.principle. | 266 |
| abstract_inverted_index.quantities | 245 |
| abstract_inverted_index.regularity | 81, 87 |
| abstract_inverted_index.respective | 203 |
| abstract_inverted_index.Perspective | 5 |
| abstract_inverted_index.algorithms, | 60 |
| abstract_inverted_index.compression | 254, 259 |
| abstract_inverted_index.dimensional | 248 |
| abstract_inverted_index.investigate | 252 |
| abstract_inverted_index.particular, | 26 |
| abstract_inverted_index.statistical | 14, 39 |
| abstract_inverted_index.subsequently | 127 |
| abstract_inverted_index.(compressing) | 109 |
| abstract_inverted_index.communicating | 108 |
| abstract_inverted_index.communication | 118 |
| abstract_inverted_index.observations. | 113 |
| abstract_inverted_index.theoretically | 156 |
| abstract_inverted_index.aforementioned | 133 |
| abstract_inverted_index.differentiable | 232 |
| abstract_inverted_index.counter-intuitively, | 165 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5058031547 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.11839381 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |