A common spectrum underlying brain disorders across lifespan revealed by deep learning on brain networks Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.isci.2023.108244
Brain disorders in the early and late life of humans potentially share pathological alterations in brain functions. However, the key neuroimaging evidence remains unrevealed for elucidating such commonness and the relationships among these disorders. To explore this puzzle, we build a restricted single-branch deep learning model, using multi-site functional magnetic resonance imaging data (N = 4,410, 6 sites), for classifying 5 different early- and late-life brain disorders from healthy controls (cognitively unimpaired). Our model achieves 62.6 1.9% overall classification accuracy and thus supports us in detecting a set of commonly affected functional subnetworks, including default mode, executive control, visual, and limbic networks. In the deep-layer representation of data, we observe young and aging patients with disorders are continuously distributed, which is in line with the clinical concept of the "spectrum of disorders." The relationships among brain disorders from the revealed spectrum promote the understanding of disorder comorbidities and time associations in the lifespan.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.isci.2023.108244
- OA Status
- gold
- Cited By
- 4
- References
- 80
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387740460
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387740460Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.isci.2023.108244Digital Object Identifier
- Title
-
A common spectrum underlying brain disorders across lifespan revealed by deep learning on brain networksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-18Full publication date if available
- Authors
-
Mianxin Liu, Jingyang Zhang, Yao Wang, Yan Zhou, Fang Xie, Qihao Guo, Feng Shi, Han Zhang, Qian Wang, Dinggang ShenList of authors in order
- Landing page
-
https://doi.org/10.1016/j.isci.2023.108244Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.isci.2023.108244Direct OA link when available
- Concepts
-
Neuroimaging, Default mode network, Neuroscience, Functional magnetic resonance imaging, Brain aging, Functional connectivity, Psychology, Medicine, Cognitive psychology, CognitionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
80Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387740460 |
|---|---|
| doi | https://doi.org/10.1016/j.isci.2023.108244 |
| ids.doi | https://doi.org/10.1016/j.isci.2023.108244 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38026184 |
| ids.openalex | https://openalex.org/W4387740460 |
| fwci | 1.05509101 |
| type | article |
| title | A common spectrum underlying brain disorders across lifespan revealed by deep learning on brain networks |
| biblio.issue | 11 |
| biblio.volume | 26 |
| biblio.last_page | 108244 |
| biblio.first_page | 108244 |
| topics[0].id | https://openalex.org/T10241 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | Functional Brain Connectivity Studies |
| topics[1].id | https://openalex.org/T14393 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Health, Environment, Cognitive Aging |
| topics[2].id | https://openalex.org/T10429 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9944999814033508 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | EEG and Brain-Computer Interfaces |
| is_xpac | False |
| apc_list.value | 3000 |
| apc_list.currency | USD |
| apc_list.value_usd | 3000 |
| apc_paid.value | 3000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3000 |
| concepts[0].id | https://openalex.org/C58693492 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7446236610412598 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q551875 |
| concepts[0].display_name | Neuroimaging |
| concepts[1].id | https://openalex.org/C141516989 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7437238693237305 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1182555 |
| concepts[1].display_name | Default mode network |
| concepts[2].id | https://openalex.org/C169760540 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6096271872520447 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[2].display_name | Neuroscience |
| concepts[3].id | https://openalex.org/C2779226451 |
| concepts[3].level | 2 |
| concepts[3].score | 0.511466383934021 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q903809 |
| concepts[3].display_name | Functional magnetic resonance imaging |
| concepts[4].id | https://openalex.org/C2993665655 |
| concepts[4].level | 3 |
| concepts[4].score | 0.46285051107406616 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q4692577 |
| concepts[4].display_name | Brain aging |
| concepts[5].id | https://openalex.org/C3018011982 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4558772146701813 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[5].display_name | Functional connectivity |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.45119285583496094 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C71924100 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3316611349582672 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[7].display_name | Medicine |
| concepts[8].id | https://openalex.org/C180747234 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32609158754348755 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[8].display_name | Cognitive psychology |
| concepts[9].id | https://openalex.org/C169900460 |
| concepts[9].level | 2 |
| concepts[9].score | 0.30220097303390503 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2200417 |
| concepts[9].display_name | Cognition |
| keywords[0].id | https://openalex.org/keywords/neuroimaging |
| keywords[0].score | 0.7446236610412598 |
| keywords[0].display_name | Neuroimaging |
| keywords[1].id | https://openalex.org/keywords/default-mode-network |
| keywords[1].score | 0.7437238693237305 |
| keywords[1].display_name | Default mode network |
| keywords[2].id | https://openalex.org/keywords/neuroscience |
| keywords[2].score | 0.6096271872520447 |
| keywords[2].display_name | Neuroscience |
| keywords[3].id | https://openalex.org/keywords/functional-magnetic-resonance-imaging |
| keywords[3].score | 0.511466383934021 |
| keywords[3].display_name | Functional magnetic resonance imaging |
| keywords[4].id | https://openalex.org/keywords/brain-aging |
| keywords[4].score | 0.46285051107406616 |
| keywords[4].display_name | Brain aging |
| keywords[5].id | https://openalex.org/keywords/functional-connectivity |
| keywords[5].score | 0.4558772146701813 |
| keywords[5].display_name | Functional connectivity |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.45119285583496094 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/medicine |
| keywords[7].score | 0.3316611349582672 |
| keywords[7].display_name | Medicine |
| keywords[8].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[8].score | 0.32609158754348755 |
| keywords[8].display_name | Cognitive psychology |
| keywords[9].id | https://openalex.org/keywords/cognition |
| keywords[9].score | 0.30220097303390503 |
| keywords[9].display_name | Cognition |
| language | en |
| locations[0].id | doi:10.1016/j.isci.2023.108244 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898358376 |
| locations[0].source.issn | 2589-0042 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2589-0042 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | iScience |
| locations[0].source.host_organization | https://openalex.org/P4310315673 |
| locations[0].source.host_organization_name | Cell Press |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315673, https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Cell Press, Elsevier BV |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | iScience |
| locations[0].landing_page_url | https://doi.org/10.1016/j.isci.2023.108244 |
| locations[1].id | pmid:38026184 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | iScience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38026184 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10651682 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10651682/pdf/main.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | iScience |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10651682 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5058203667 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5171-778X |
| authorships[0].author.display_name | Mianxin Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I4210100255, https://openalex.org/I4391012619 |
| authorships[0].affiliations[0].raw_affiliation_string | Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I30809798 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. |
| authorships[0].institutions[0].id | https://openalex.org/I4391012619 |
| authorships[0].institutions[0].ror | https://ror.org/03wkvpx79 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I4391012619 |
| authorships[0].institutions[0].country_code | |
| authorships[0].institutions[0].display_name | Shanghai Artificial Intelligence Laboratory |
| authorships[0].institutions[1].id | https://openalex.org/I4210100255 |
| authorships[0].institutions[1].ror | https://ror.org/016a74861 |
| authorships[0].institutions[1].type | other |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210100255 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Beijing Academy of Artificial Intelligence |
| authorships[0].institutions[2].id | https://openalex.org/I30809798 |
| authorships[0].institutions[2].ror | https://ror.org/030bhh786 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I30809798 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | ShanghaiTech University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mianxin Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China., Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China. |
| authorships[1].author.id | https://openalex.org/A5063092287 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1788-6501 |
| authorships[1].author.display_name | Jingyang Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I30809798 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. |
| authorships[1].institutions[0].id | https://openalex.org/I30809798 |
| authorships[1].institutions[0].ror | https://ror.org/030bhh786 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I30809798 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | ShanghaiTech University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jingyang Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. |
| authorships[2].author.id | https://openalex.org/A5100318997 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-5216-6411 |
| authorships[2].author.display_name | Yao Wang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183067930, https://openalex.org/I2800570007 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China. |
| authorships[2].institutions[0].id | https://openalex.org/I2800570007 |
| authorships[2].institutions[0].ror | https://ror.org/03ypbx660 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2800570007 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Renji Hospital |
| authorships[2].institutions[1].id | https://openalex.org/I183067930 |
| authorships[2].institutions[1].ror | https://ror.org/0220qvk04 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I183067930 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Shanghai Jiao Tong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yao Wang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China. |
| authorships[3].author.id | https://openalex.org/A5101627733 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2181-6549 |
| authorships[3].author.display_name | Yan Zhou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I183067930, https://openalex.org/I2800570007 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China. |
| authorships[3].institutions[0].id | https://openalex.org/I2800570007 |
| authorships[3].institutions[0].ror | https://ror.org/03ypbx660 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2800570007 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Renji Hospital |
| authorships[3].institutions[1].id | https://openalex.org/I183067930 |
| authorships[3].institutions[1].ror | https://ror.org/0220qvk04 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I183067930 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Shanghai Jiao Tong University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yan Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China. |
| authorships[4].author.id | https://openalex.org/A5100785686 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5327-764X |
| authorships[4].author.display_name | Fang Xie |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I24943067, https://openalex.org/I4210159575 |
| authorships[4].affiliations[0].raw_affiliation_string | PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China. |
| authorships[4].institutions[0].id | https://openalex.org/I24943067 |
| authorships[4].institutions[0].ror | https://ror.org/013q1eq08 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I24943067 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Fudan University |
| authorships[4].institutions[1].id | https://openalex.org/I4210159575 |
| authorships[4].institutions[1].ror | https://ror.org/05201qm87 |
| authorships[4].institutions[1].type | healthcare |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210159575 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Huashan Hospital |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fang Xie |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | PET Center, Huashan Hospital, Fudan University, Shanghai 200040, China. |
| authorships[5].author.id | https://openalex.org/A5088012417 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-5079-8047 |
| authorships[5].author.display_name | Qihao Guo |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I183067930, https://openalex.org/I4210144482 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China. |
| authorships[5].institutions[0].id | https://openalex.org/I183067930 |
| authorships[5].institutions[0].ror | https://ror.org/0220qvk04 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I183067930 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shanghai Jiao Tong University |
| authorships[5].institutions[1].id | https://openalex.org/I4210144482 |
| authorships[5].institutions[1].ror | https://ror.org/049zrh188 |
| authorships[5].institutions[1].type | healthcare |
| authorships[5].institutions[1].lineage | https://openalex.org/I4210144482 |
| authorships[5].institutions[1].country_code | CN |
| authorships[5].institutions[1].display_name | Shanghai Sixth People's Hospital |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Qihao Guo |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China. |
| authorships[6].author.id | https://openalex.org/A5044868467 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1522-9943 |
| authorships[6].author.display_name | Feng Shi |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210135459 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200232, China. |
| authorships[6].institutions[0].id | https://openalex.org/I4210135459 |
| authorships[6].institutions[0].ror | https://ror.org/03qqw3m37 |
| authorships[6].institutions[0].type | company |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210135459 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | United Imaging Healthcare (China) |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Feng Shi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200232, China. |
| authorships[7].author.id | https://openalex.org/A5108049200 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-6645-8810 |
| authorships[7].author.display_name | Han Zhang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I30809798 |
| authorships[7].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. |
| authorships[7].institutions[0].id | https://openalex.org/I30809798 |
| authorships[7].institutions[0].ror | https://ror.org/030bhh786 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I30809798 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | ShanghaiTech University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Han Zhang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. |
| authorships[8].author.id | https://openalex.org/A5100391054 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-3490-3836 |
| authorships[8].author.display_name | Qian Wang |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I30809798 |
| authorships[8].affiliations[0].raw_affiliation_string | School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. |
| authorships[8].institutions[0].id | https://openalex.org/I30809798 |
| authorships[8].institutions[0].ror | https://ror.org/030bhh786 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I30809798 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | ShanghaiTech University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Qian Wang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. |
| authorships[9].author.id | https://openalex.org/A5000937401 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-7934-5698 |
| authorships[9].author.display_name | Dinggang Shen |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I4210135459 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200232, China. |
| authorships[9].affiliations[1].institution_ids | https://openalex.org/I4210157781 |
| authorships[9].affiliations[1].raw_affiliation_string | Shanghai Clinical Research and Trial Center, Shanghai 201210, China. |
| authorships[9].affiliations[2].institution_ids | https://openalex.org/I30809798 |
| authorships[9].affiliations[2].raw_affiliation_string | School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China. |
| authorships[9].institutions[0].id | https://openalex.org/I4210157781 |
| authorships[9].institutions[0].ror | https://ror.org/057tkkm33 |
| authorships[9].institutions[0].type | facility |
| authorships[9].institutions[0].lineage | https://openalex.org/I4210157781 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Shanghai Clinical Research Center |
| authorships[9].institutions[1].id | https://openalex.org/I30809798 |
| authorships[9].institutions[1].ror | https://ror.org/030bhh786 |
| authorships[9].institutions[1].type | education |
| authorships[9].institutions[1].lineage | https://openalex.org/I30809798 |
| authorships[9].institutions[1].country_code | CN |
| authorships[9].institutions[1].display_name | ShanghaiTech University |
| authorships[9].institutions[2].id | https://openalex.org/I4210135459 |
| authorships[9].institutions[2].ror | https://ror.org/03qqw3m37 |
| authorships[9].institutions[2].type | company |
| authorships[9].institutions[2].lineage | https://openalex.org/I4210135459 |
| authorships[9].institutions[2].country_code | CN |
| authorships[9].institutions[2].display_name | United Imaging Healthcare (China) |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Dinggang Shen |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd, Shanghai 200232, China., School of Biomedical Engineering, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China., Shanghai Clinical Research and Trial Center, Shanghai 201210, China. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.isci.2023.108244 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A common spectrum underlying brain disorders across lifespan revealed by deep learning on brain networks |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10241 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | Functional Brain Connectivity Studies |
| related_works | https://openalex.org/W3205149984, https://openalex.org/W2042557239, https://openalex.org/W2735521735, https://openalex.org/W4253292488, https://openalex.org/W2598004201, https://openalex.org/W2979593753, https://openalex.org/W2332917244, https://openalex.org/W2086686577, https://openalex.org/W3024330329, https://openalex.org/W3165201259 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1016/j.isci.2023.108244 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898358376 |
| best_oa_location.source.issn | 2589-0042 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2589-0042 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | iScience |
| best_oa_location.source.host_organization | https://openalex.org/P4310315673 |
| best_oa_location.source.host_organization_name | Cell Press |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315673, https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Cell Press, Elsevier BV |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | iScience |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.isci.2023.108244 |
| primary_location.id | doi:10.1016/j.isci.2023.108244 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898358376 |
| primary_location.source.issn | 2589-0042 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2589-0042 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | iScience |
| primary_location.source.host_organization | https://openalex.org/P4310315673 |
| primary_location.source.host_organization_name | Cell Press |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315673, https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Cell Press, Elsevier BV |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | iScience |
| primary_location.landing_page_url | https://doi.org/10.1016/j.isci.2023.108244 |
| publication_date | 2023-10-18 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6675281185, https://openalex.org/W2981275956, https://openalex.org/W2769544142, https://openalex.org/W4210997646, https://openalex.org/W2015932212, https://openalex.org/W2033302372, https://openalex.org/W2141455347, https://openalex.org/W4297242151, https://openalex.org/W2137554996, https://openalex.org/W2804435536, https://openalex.org/W2724380411, https://openalex.org/W2014000620, https://openalex.org/W2527609605, https://openalex.org/W2914336019, https://openalex.org/W2993096730, https://openalex.org/W3189494648, https://openalex.org/W2044092930, https://openalex.org/W2307832722, https://openalex.org/W3190968025, https://openalex.org/W3197184955, https://openalex.org/W4293194715, https://openalex.org/W2005933475, https://openalex.org/W2900856701, https://openalex.org/W6736186876, https://openalex.org/W2020732236, https://openalex.org/W2112249501, https://openalex.org/W3092100795, https://openalex.org/W2324392087, https://openalex.org/W6752682093, https://openalex.org/W6843936103, https://openalex.org/W4280505354, https://openalex.org/W2889669663, https://openalex.org/W2951617899, https://openalex.org/W4295750005, https://openalex.org/W6801962085, https://openalex.org/W4210635509, https://openalex.org/W2055345898, https://openalex.org/W2136435696, https://openalex.org/W2084667179, https://openalex.org/W2137310182, https://openalex.org/W1545788147, https://openalex.org/W3209486240, https://openalex.org/W2963499979, https://openalex.org/W2954856236, https://openalex.org/W2752381652, https://openalex.org/W6786585107, https://openalex.org/W6778883912, https://openalex.org/W6755207826, https://openalex.org/W2167868121, https://openalex.org/W6633782522, https://openalex.org/W2156450079, https://openalex.org/W2150534249, https://openalex.org/W6699557531, https://openalex.org/W2107665951, https://openalex.org/W3010641024, https://openalex.org/W2952091205, https://openalex.org/W2117140276, https://openalex.org/W2057550180, https://openalex.org/W3199011255, https://openalex.org/W6726873649, https://openalex.org/W6631190155, https://openalex.org/W6753331806, https://openalex.org/W6757634740, https://openalex.org/W6761665040, https://openalex.org/W6766263406, https://openalex.org/W2536956629, https://openalex.org/W4285751350, https://openalex.org/W2907101105, https://openalex.org/W2316523050, https://openalex.org/W1522301498, https://openalex.org/W2964015378, https://openalex.org/W4212774754, https://openalex.org/W4301409532, https://openalex.org/W1560723556, https://openalex.org/W2100805489, https://openalex.org/W4254446689, https://openalex.org/W2606031557, https://openalex.org/W4255021366, https://openalex.org/W4381327817, https://openalex.org/W2067456724 |
| referenced_works_count | 80 |
| abstract_inverted_index.5 | 60 |
| abstract_inverted_index.6 | 56 |
| abstract_inverted_index.= | 54 |
| abstract_inverted_index.a | 40, 88 |
| abstract_inverted_index.In | 104 |
| abstract_inverted_index.To | 34 |
| abstract_inverted_index.in | 2, 14, 86, 123, 152 |
| abstract_inverted_index.is | 122 |
| abstract_inverted_index.of | 8, 90, 108, 129, 132, 146 |
| abstract_inverted_index.us | 85 |
| abstract_inverted_index.we | 38, 110 |
| abstract_inverted_index.Our | 72 |
| abstract_inverted_index.The | 134 |
| abstract_inverted_index.and | 5, 28, 63, 82, 101, 113, 149 |
| abstract_inverted_index.are | 118 |
| abstract_inverted_index.for | 24, 58 |
| abstract_inverted_index.key | 19 |
| abstract_inverted_index.set | 89 |
| abstract_inverted_index.the | 3, 18, 29, 105, 126, 130, 140, 144, 153 |
| abstract_inverted_index.1.9% | 78 |
| abstract_inverted_index.62.6 | 75 |
| abstract_inverted_index.data | 52 |
| abstract_inverted_index.deep | 43 |
| abstract_inverted_index.from | 67, 139 |
| abstract_inverted_index.late | 6 |
| abstract_inverted_index.life | 7 |
| abstract_inverted_index.line | 124 |
| abstract_inverted_index.such | 26 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.thus | 83 |
| abstract_inverted_index.time | 150 |
| abstract_inverted_index.with | 116, 125 |
| abstract_inverted_index.Brain | 0 |
| abstract_inverted_index.aging | 114 |
| abstract_inverted_index.among | 31, 136 |
| abstract_inverted_index.brain | 15, 65, 137 |
| abstract_inverted_index.build | 39 |
| abstract_inverted_index.data, | 109 |
| abstract_inverted_index.early | 4 |
| abstract_inverted_index.mode, | 97 |
| abstract_inverted_index.model | 73 |
| abstract_inverted_index.share | 11 |
| abstract_inverted_index.these | 32 |
| abstract_inverted_index.using | 46 |
| abstract_inverted_index.which | 121 |
| abstract_inverted_index.young | 112 |
| abstract_inverted_index.4,410, | 55 |
| abstract_inverted_index.early- | 62 |
| abstract_inverted_index.humans | 9 |
| abstract_inverted_index.limbic | 102 |
| abstract_inverted_index.model, | 45 |
| abstract_inverted_index.concept | 128 |
| abstract_inverted_index.default | 96 |
| abstract_inverted_index.explore | 35 |
| abstract_inverted_index.healthy | 68 |
| abstract_inverted_index.imaging | 51 |
| abstract_inverted_index.observe | 111 |
| abstract_inverted_index.overall | 79 |
| abstract_inverted_index.promote | 143 |
| abstract_inverted_index.puzzle, | 37 |
| abstract_inverted_index.remains | 22 |
| abstract_inverted_index.sites), | 57 |
| abstract_inverted_index.visual, | 100 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.accuracy | 81 |
| abstract_inverted_index.achieves | 74 |
| abstract_inverted_index.affected | 92 |
| abstract_inverted_index.clinical | 127 |
| abstract_inverted_index.commonly | 91 |
| abstract_inverted_index.control, | 99 |
| abstract_inverted_index.controls | 69 |
| abstract_inverted_index.disorder | 147 |
| abstract_inverted_index.evidence | 21 |
| abstract_inverted_index.learning | 44 |
| abstract_inverted_index.magnetic | 49 |
| abstract_inverted_index.patients | 115 |
| abstract_inverted_index.revealed | 141 |
| abstract_inverted_index.spectrum | 142 |
| abstract_inverted_index.supports | 84 |
| abstract_inverted_index."spectrum | 131 |
| abstract_inverted_index.(<i>N</i> | 53 |
| abstract_inverted_index.<mml:math | 76 |
| abstract_inverted_index.detecting | 87 |
| abstract_inverted_index.different | 61 |
| abstract_inverted_index.disorders | 1, 66, 117, 138 |
| abstract_inverted_index.executive | 98 |
| abstract_inverted_index.including | 95 |
| abstract_inverted_index.late-life | 64 |
| abstract_inverted_index.lifespan. | 154 |
| abstract_inverted_index.networks. | 103 |
| abstract_inverted_index.resonance | 50 |
| abstract_inverted_index.commonness | 27 |
| abstract_inverted_index.deep-layer | 106 |
| abstract_inverted_index.disorders. | 33 |
| abstract_inverted_index.functional | 48, 93 |
| abstract_inverted_index.functions. | 16 |
| abstract_inverted_index.multi-site | 47 |
| abstract_inverted_index.restricted | 41 |
| abstract_inverted_index.unrevealed | 23 |
| abstract_inverted_index.alterations | 13 |
| abstract_inverted_index.classifying | 59 |
| abstract_inverted_index.disorders." | 133 |
| abstract_inverted_index.elucidating | 25 |
| abstract_inverted_index.potentially | 10 |
| abstract_inverted_index.(cognitively | 70 |
| abstract_inverted_index.associations | 151 |
| abstract_inverted_index.continuously | 119 |
| abstract_inverted_index.distributed, | 120 |
| abstract_inverted_index.neuroimaging | 20 |
| abstract_inverted_index.pathological | 12 |
| abstract_inverted_index.subnetworks, | 94 |
| abstract_inverted_index.unimpaired). | 71 |
| abstract_inverted_index.comorbidities | 148 |
| abstract_inverted_index.relationships | 30, 135 |
| abstract_inverted_index.single-branch | 42 |
| abstract_inverted_index.understanding | 145 |
| abstract_inverted_index.classification | 80 |
| abstract_inverted_index.representation | 107 |
| abstract_inverted_index.xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>±</mml:mo></mml:mrow></mml:math> | 77 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.72853942 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |