A Comparative Analysis of YOLOv5nu, YOLOv8n, and YOLOv11n Models for Blood Cell Detection and Classification Article Swipe
Object detection, which detects and classifies objects, is widely used in different fields. One such field is in the medical field, and more specifically it can be used to detect molecules in microscopy images to improve blood test efficiency. Nowadays, plentiful hospital labs are still manually counting blood cells which is time-consuming, and it is likely to make manual errors. A solution to this problem is to enable accurate object detection specifically designed for identifying molecules. To achieve this goal, the comparison analysis of different YOLO models, one of the most popular models in object detection, on a blood cell dataset is valuable as it evaluates the models accuracy, which provides insight into their strengths and weaknesses. The paper considers three types of YOLO models, YOLOv5nu, YOLOv8n, and YOLO11n models, on detecting and classifying red blood cells (RBC), white blood cells (WBCs), and Platelets. The experiment results show that all three models have high precision and recall rates, which means that they can identify most of the molecules accurately. This indicates a promising future of integrating object detection on blood cell count to speed up medical analysis.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.54254/2755-2721/2025.19559
- https://www.ewadirect.com/proceedings/ace/article/view/19559/pdf
- OA Status
- hybrid
- References
- 8
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406247662
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406247662Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.54254/2755-2721/2025.19559Digital Object Identifier
- Title
-
A Comparative Analysis of YOLOv5nu, YOLOv8n, and YOLOv11n Models for Blood Cell Detection and ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-10Full publication date if available
- Authors
-
Jianrong LiList of authors in order
- Landing page
-
https://doi.org/10.54254/2755-2721/2025.19559Publisher landing page
- PDF URL
-
https://www.ewadirect.com/proceedings/ace/article/view/19559/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.ewadirect.com/proceedings/ace/article/view/19559/pdfDirect OA link when available
- Concepts
-
Computational biology, Computer science, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
8Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406247662 |
|---|---|
| doi | https://doi.org/10.54254/2755-2721/2025.19559 |
| ids.doi | https://doi.org/10.54254/2755-2721/2025.19559 |
| ids.openalex | https://openalex.org/W4406247662 |
| fwci | 0.0 |
| type | article |
| title | A Comparative Analysis of YOLOv5nu, YOLOv8n, and YOLOv11n Models for Blood Cell Detection and Classification |
| biblio.issue | 1 |
| biblio.volume | 121 |
| biblio.last_page | 71 |
| biblio.first_page | 66 |
| topics[0].id | https://openalex.org/T12874 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9610999822616577 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Digital Imaging for Blood Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C70721500 |
| concepts[0].level | 1 |
| concepts[0].score | 0.36013737320899963 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[0].display_name | Computational biology |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3471734821796417 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C86803240 |
| concepts[2].level | 0 |
| concepts[2].score | 0.242657870054245 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[2].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computational-biology |
| keywords[0].score | 0.36013737320899963 |
| keywords[0].display_name | Computational biology |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.3471734821796417 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/biology |
| keywords[2].score | 0.242657870054245 |
| keywords[2].display_name | Biology |
| language | en |
| locations[0].id | doi:10.54254/2755-2721/2025.19559 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387281889 |
| locations[0].source.issn | 2755-2721, 2755-273X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2755-2721 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied and Computational Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/19559/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied and Computational Engineering |
| locations[0].landing_page_url | https://doi.org/10.54254/2755-2721/2025.19559 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100627198 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0298-124X |
| authorships[0].author.display_name | Jianrong Li |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Engineering, University of Wisconsin-Madison, Wisconsin, United States of America |
| authorships[0].institutions[0].id | https://openalex.org/I135310074 |
| authorships[0].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tingting Li |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | College of Engineering, University of Wisconsin-Madison, Wisconsin, United States of America |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ewadirect.com/proceedings/ace/article/view/19559/pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Comparative Analysis of YOLOv5nu, YOLOv8n, and YOLOv11n Models for Blood Cell Detection and Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12874 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9610999822616577 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Digital Imaging for Blood Diseases |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.54254/2755-2721/2025.19559 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387281889 |
| best_oa_location.source.issn | 2755-2721, 2755-273X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2755-2721 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied and Computational Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/19559/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied and Computational Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.54254/2755-2721/2025.19559 |
| primary_location.id | doi:10.54254/2755-2721/2025.19559 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387281889 |
| primary_location.source.issn | 2755-2721, 2755-273X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2755-2721 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied and Computational Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/19559/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied and Computational Engineering |
| primary_location.landing_page_url | https://doi.org/10.54254/2755-2721/2025.19559 |
| publication_date | 2025-01-10 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6820493794, https://openalex.org/W6807788467, https://openalex.org/W4384468957, https://openalex.org/W3202671536, https://openalex.org/W4391483785, https://openalex.org/W6807916582, https://openalex.org/W2787108247, https://openalex.org/W4402613813 |
| referenced_works_count | 8 |
| abstract_inverted_index.A | 60 |
| abstract_inverted_index.a | 97, 171 |
| abstract_inverted_index.To | 76 |
| abstract_inverted_index.as | 103 |
| abstract_inverted_index.be | 26 |
| abstract_inverted_index.in | 10, 17, 31, 93 |
| abstract_inverted_index.is | 7, 16, 50, 54, 65, 101 |
| abstract_inverted_index.it | 24, 53, 104 |
| abstract_inverted_index.of | 83, 88, 122, 165, 174 |
| abstract_inverted_index.on | 96, 130, 178 |
| abstract_inverted_index.to | 28, 34, 56, 62, 66, 182 |
| abstract_inverted_index.up | 184 |
| abstract_inverted_index.One | 13 |
| abstract_inverted_index.The | 117, 144 |
| abstract_inverted_index.all | 149 |
| abstract_inverted_index.and | 4, 21, 52, 115, 127, 132, 142, 155 |
| abstract_inverted_index.are | 43 |
| abstract_inverted_index.can | 25, 162 |
| abstract_inverted_index.for | 73 |
| abstract_inverted_index.one | 87 |
| abstract_inverted_index.red | 134 |
| abstract_inverted_index.the | 18, 80, 89, 106, 166 |
| abstract_inverted_index.This | 169 |
| abstract_inverted_index.YOLO | 85, 123 |
| abstract_inverted_index.cell | 99, 180 |
| abstract_inverted_index.have | 152 |
| abstract_inverted_index.high | 153 |
| abstract_inverted_index.into | 112 |
| abstract_inverted_index.labs | 42 |
| abstract_inverted_index.make | 57 |
| abstract_inverted_index.more | 22 |
| abstract_inverted_index.most | 90, 164 |
| abstract_inverted_index.show | 147 |
| abstract_inverted_index.such | 14 |
| abstract_inverted_index.test | 37 |
| abstract_inverted_index.that | 148, 160 |
| abstract_inverted_index.they | 161 |
| abstract_inverted_index.this | 63, 78 |
| abstract_inverted_index.used | 9, 27 |
| abstract_inverted_index.blood | 36, 47, 98, 135, 139, 179 |
| abstract_inverted_index.cells | 48, 136, 140 |
| abstract_inverted_index.count | 181 |
| abstract_inverted_index.field | 15 |
| abstract_inverted_index.goal, | 79 |
| abstract_inverted_index.means | 159 |
| abstract_inverted_index.paper | 118 |
| abstract_inverted_index.speed | 183 |
| abstract_inverted_index.still | 44 |
| abstract_inverted_index.their | 113 |
| abstract_inverted_index.three | 120, 150 |
| abstract_inverted_index.types | 121 |
| abstract_inverted_index.which | 2, 49, 109, 158 |
| abstract_inverted_index.white | 138 |
| abstract_inverted_index.(RBC), | 137 |
| abstract_inverted_index.Object | 0 |
| abstract_inverted_index.detect | 29 |
| abstract_inverted_index.enable | 67 |
| abstract_inverted_index.field, | 20 |
| abstract_inverted_index.future | 173 |
| abstract_inverted_index.images | 33 |
| abstract_inverted_index.likely | 55 |
| abstract_inverted_index.manual | 58 |
| abstract_inverted_index.models | 92, 107, 151 |
| abstract_inverted_index.object | 69, 94, 176 |
| abstract_inverted_index.rates, | 157 |
| abstract_inverted_index.recall | 156 |
| abstract_inverted_index.widely | 8 |
| abstract_inverted_index.(WBCs), | 141 |
| abstract_inverted_index.YOLO11n | 128 |
| abstract_inverted_index.achieve | 77 |
| abstract_inverted_index.dataset | 100 |
| abstract_inverted_index.detects | 3 |
| abstract_inverted_index.errors. | 59 |
| abstract_inverted_index.fields. | 12 |
| abstract_inverted_index.improve | 35 |
| abstract_inverted_index.insight | 111 |
| abstract_inverted_index.medical | 19, 185 |
| abstract_inverted_index.models, | 86, 124, 129 |
| abstract_inverted_index.popular | 91 |
| abstract_inverted_index.problem | 64 |
| abstract_inverted_index.results | 146 |
| abstract_inverted_index.YOLOv8n, | 126 |
| abstract_inverted_index.accurate | 68 |
| abstract_inverted_index.analysis | 82 |
| abstract_inverted_index.counting | 46 |
| abstract_inverted_index.designed | 72 |
| abstract_inverted_index.hospital | 41 |
| abstract_inverted_index.identify | 163 |
| abstract_inverted_index.manually | 45 |
| abstract_inverted_index.objects, | 6 |
| abstract_inverted_index.provides | 110 |
| abstract_inverted_index.solution | 61 |
| abstract_inverted_index.valuable | 102 |
| abstract_inverted_index.Nowadays, | 39 |
| abstract_inverted_index.YOLOv5nu, | 125 |
| abstract_inverted_index.accuracy, | 108 |
| abstract_inverted_index.analysis. | 186 |
| abstract_inverted_index.considers | 119 |
| abstract_inverted_index.detecting | 131 |
| abstract_inverted_index.detection | 70, 177 |
| abstract_inverted_index.different | 11, 84 |
| abstract_inverted_index.evaluates | 105 |
| abstract_inverted_index.indicates | 170 |
| abstract_inverted_index.molecules | 30, 167 |
| abstract_inverted_index.plentiful | 40 |
| abstract_inverted_index.precision | 154 |
| abstract_inverted_index.promising | 172 |
| abstract_inverted_index.strengths | 114 |
| abstract_inverted_index.Platelets. | 143 |
| abstract_inverted_index.classifies | 5 |
| abstract_inverted_index.comparison | 81 |
| abstract_inverted_index.detection, | 1, 95 |
| abstract_inverted_index.experiment | 145 |
| abstract_inverted_index.microscopy | 32 |
| abstract_inverted_index.molecules. | 75 |
| abstract_inverted_index.accurately. | 168 |
| abstract_inverted_index.classifying | 133 |
| abstract_inverted_index.efficiency. | 38 |
| abstract_inverted_index.identifying | 74 |
| abstract_inverted_index.integrating | 175 |
| abstract_inverted_index.weaknesses. | 116 |
| abstract_inverted_index.specifically | 23, 71 |
| abstract_inverted_index.time-consuming, | 51 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5100627198 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I135310074 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.0074453 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |