A Comparative Study of the Method to Rapid Identification of the Mural Pigments by Combining LIBS-Based Dataset and Machine Learning Methods Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/chemosensors10100389
Due to the similar chemical composition and matrix effect, the accurate identification of mineral pigments on wall paintings has brought great challenges. This work implemented an identification study on three mineral pigments with similar chemical compositions by combining LIBS technology with the K-nearest neighbor algorithm (KNN), random forest (RF support vector machine (SVM), back propagation artificial neural network (Bp-ANN) and convolutional neural network (CNN) to find the most suitable identification method for mural research. Using the SelectKBest algorithm, 300 characteristic lines with the largest difference among the three pigments were determined. The identification models of KNN, RF, SVM, Bp-ANN and CNN were established and optimized. The results showed that, except for the KNN model, the identification accuracy of other models for mock-up mural samples was above 99%. However, only the identification accuracy of 2D-CNN models reached above 94% for actual mural samples. Therefore, the 2D-CNN model was determined as the most suitable model for the identification and analysis of mural pigments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/chemosensors10100389
- https://www.mdpi.com/2227-9040/10/10/389/pdf?version=1664015773
- OA Status
- gold
- Cited By
- 10
- References
- 36
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4297152853
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4297152853Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/chemosensors10100389Digital Object Identifier
- Title
-
A Comparative Study of the Method to Rapid Identification of the Mural Pigments by Combining LIBS-Based Dataset and Machine Learning MethodsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-24Full publication date if available
- Authors
-
Duixiong Sun, Yiming Zhang, Yaopeng Yin, Zhao Zhang, Hengli Qian, Yarui Wang, Zongren Yu, Bomin Su, Chenzhong Dong, Maogen SuList of authors in order
- Landing page
-
https://doi.org/10.3390/chemosensors10100389Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-9040/10/10/389/pdf?version=1664015773Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-9040/10/10/389/pdf?version=1664015773Direct OA link when available
- Concepts
-
Mural, Support vector machine, Artificial intelligence, Convolutional neural network, Identification (biology), Artificial neural network, Computer science, Pattern recognition (psychology), Machine learning, Painting, Visual arts, Art, Botany, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 3, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
36Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4297152853 |
|---|---|
| doi | https://doi.org/10.3390/chemosensors10100389 |
| ids.doi | https://doi.org/10.3390/chemosensors10100389 |
| ids.openalex | https://openalex.org/W4297152853 |
| fwci | 14.43290018 |
| type | article |
| title | A Comparative Study of the Method to Rapid Identification of the Mural Pigments by Combining LIBS-Based Dataset and Machine Learning Methods |
| awards[0].id | https://openalex.org/G4516755921 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61965015 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G8433785552 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61741513 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 10 |
| biblio.volume | 10 |
| biblio.last_page | 389 |
| biblio.first_page | 389 |
| topics[0].id | https://openalex.org/T11212 |
| topics[0].field.id | https://openalex.org/fields/12 |
| topics[0].field.display_name | Arts and Humanities |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1204 |
| topics[0].subfield.display_name | Archeology |
| topics[0].display_name | Cultural Heritage Materials Analysis |
| topics[1].id | https://openalex.org/T12981 |
| topics[1].field.id | https://openalex.org/fields/12 |
| topics[1].field.display_name | Arts and Humanities |
| topics[1].score | 0.9824000000953674 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1206 |
| topics[1].subfield.display_name | Conservation |
| topics[1].display_name | Conservation Techniques and Studies |
| topics[2].id | https://openalex.org/T11854 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9801999926567078 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Laser-induced spectroscopy and plasma |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1800 |
| apc_list.currency | CHF |
| apc_list.value_usd | 1949 |
| apc_paid.value | 1800 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 1949 |
| concepts[0].id | https://openalex.org/C2777420470 |
| concepts[0].level | 3 |
| concepts[0].score | 0.856304943561554 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q219423 |
| concepts[0].display_name | Mural |
| concepts[1].id | https://openalex.org/C12267149 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7815291881561279 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[1].display_name | Support vector machine |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7599260210990906 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C81363708 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7176154255867004 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[3].display_name | Convolutional neural network |
| concepts[4].id | https://openalex.org/C116834253 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6760988235473633 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[4].display_name | Identification (biology) |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5347294807434082 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.5308274626731873 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5283913016319275 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3525635004043579 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C205783811 |
| concepts[9].level | 2 |
| concepts[9].score | 0.10529035329818726 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11629 |
| concepts[9].display_name | Painting |
| concepts[10].id | https://openalex.org/C153349607 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q36649 |
| concepts[10].display_name | Visual arts |
| concepts[11].id | https://openalex.org/C142362112 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q735 |
| concepts[11].display_name | Art |
| concepts[12].id | https://openalex.org/C59822182 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[12].display_name | Botany |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/mural |
| keywords[0].score | 0.856304943561554 |
| keywords[0].display_name | Mural |
| keywords[1].id | https://openalex.org/keywords/support-vector-machine |
| keywords[1].score | 0.7815291881561279 |
| keywords[1].display_name | Support vector machine |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7599260210990906 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[3].score | 0.7176154255867004 |
| keywords[3].display_name | Convolutional neural network |
| keywords[4].id | https://openalex.org/keywords/identification |
| keywords[4].score | 0.6760988235473633 |
| keywords[4].display_name | Identification (biology) |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5347294807434082 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.5308274626731873 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.5283913016319275 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3525635004043579 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/painting |
| keywords[9].score | 0.10529035329818726 |
| keywords[9].display_name | Painting |
| language | en |
| locations[0].id | doi:10.3390/chemosensors10100389 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210174123 |
| locations[0].source.issn | 2227-9040 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-9040 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Chemosensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-9040/10/10/389/pdf?version=1664015773 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Chemosensors |
| locations[0].landing_page_url | https://doi.org/10.3390/chemosensors10100389 |
| locations[1].id | pmh:oai:doaj.org/article:4c4c5f01079e4e988e28adaae675c3eb |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Chemosensors, Vol 10, Iss 10, p 389 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/4c4c5f01079e4e988e28adaae675c3eb |
| locations[2].id | pmh:oai:mdpi.com:/2227-9040/10/10/389/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Chemosensors; Volume 10; Issue 10; Pages: 389 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/chemosensors10100389 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5101660481 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0057-0244 |
| authorships[0].author.display_name | Duixiong Sun |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[0].institutions[0].id | https://openalex.org/I68986083 |
| authorships[0].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northwest Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Duixiong Sun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[1].author.id | https://openalex.org/A5100395355 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9603-2362 |
| authorships[1].author.display_name | Yiming Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[1].institutions[0].id | https://openalex.org/I68986083 |
| authorships[1].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northwest Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yiming Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[2].author.id | https://openalex.org/A5054559404 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4356-4861 |
| authorships[2].author.display_name | Yaopeng Yin |
| authorships[2].affiliations[0].raw_affiliation_string | National Research Centre for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang 736200, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yaopeng Yin |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | National Research Centre for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang 736200, China |
| authorships[3].author.id | https://openalex.org/A5100423029 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5703-7969 |
| authorships[3].author.display_name | Zhao Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[3].institutions[0].id | https://openalex.org/I68986083 |
| authorships[3].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northwest Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhao Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[4].author.id | https://openalex.org/A5049896945 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5748-0656 |
| authorships[4].author.display_name | Hengli Qian |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[4].institutions[0].id | https://openalex.org/I68986083 |
| authorships[4].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Northwest Normal University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hengli Qian |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[5].author.id | https://openalex.org/A5076294562 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2464-2177 |
| authorships[5].author.display_name | Yarui Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[5].institutions[0].id | https://openalex.org/I68986083 |
| authorships[5].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Northwest Normal University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yarui Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[6].author.id | https://openalex.org/A5111130195 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Zongren Yu |
| authorships[6].affiliations[0].raw_affiliation_string | National Research Centre for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang 736200, China |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zongren Yu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | National Research Centre for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang 736200, China |
| authorships[7].author.id | https://openalex.org/A5082511378 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Bomin Su |
| authorships[7].affiliations[0].raw_affiliation_string | National Research Centre for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang 736200, China |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Bomin Su |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | National Research Centre for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang 736200, China |
| authorships[8].author.id | https://openalex.org/A5111685338 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-9341-4517 |
| authorships[8].author.display_name | Chenzhong Dong |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[8].affiliations[0].raw_affiliation_string | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[8].institutions[0].id | https://openalex.org/I68986083 |
| authorships[8].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Northwest Normal University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Chenzhong Dong |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[9].author.id | https://openalex.org/A5074219762 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4373-3602 |
| authorships[9].author.display_name | Maogen Su |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[9].affiliations[0].raw_affiliation_string | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| authorships[9].institutions[0].id | https://openalex.org/I68986083 |
| authorships[9].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Northwest Normal University |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Maogen Su |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-9040/10/10/389/pdf?version=1664015773 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Comparative Study of the Method to Rapid Identification of the Mural Pigments by Combining LIBS-Based Dataset and Machine Learning Methods |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11212 |
| primary_topic.field.id | https://openalex.org/fields/12 |
| primary_topic.field.display_name | Arts and Humanities |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1204 |
| primary_topic.subfield.display_name | Archeology |
| primary_topic.display_name | Cultural Heritage Materials Analysis |
| related_works | https://openalex.org/W2156165022, https://openalex.org/W2231338183, https://openalex.org/W2371159815, https://openalex.org/W2610116579, https://openalex.org/W2477619790, https://openalex.org/W1929133083, https://openalex.org/W2951146958, https://openalex.org/W4391511747, https://openalex.org/W1935333745, https://openalex.org/W2372361170 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/chemosensors10100389 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210174123 |
| best_oa_location.source.issn | 2227-9040 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-9040 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Chemosensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-9040/10/10/389/pdf?version=1664015773 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Chemosensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/chemosensors10100389 |
| primary_location.id | doi:10.3390/chemosensors10100389 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210174123 |
| primary_location.source.issn | 2227-9040 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-9040 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Chemosensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-9040/10/10/389/pdf?version=1664015773 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Chemosensors |
| primary_location.landing_page_url | https://doi.org/10.3390/chemosensors10100389 |
| publication_date | 2022-09-24 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3036227930, https://openalex.org/W2471597977, https://openalex.org/W2897795668, https://openalex.org/W6690081182, https://openalex.org/W2785358902, https://openalex.org/W1908511036, https://openalex.org/W1913636221, https://openalex.org/W2561830386, https://openalex.org/W6809677040, https://openalex.org/W2963325675, https://openalex.org/W3100745855, https://openalex.org/W3046351544, https://openalex.org/W6719627212, https://openalex.org/W2891541000, https://openalex.org/W2139225387, https://openalex.org/W2622289934, https://openalex.org/W2922719512, https://openalex.org/W3202459910, https://openalex.org/W3207533527, https://openalex.org/W3131787051, https://openalex.org/W650013066, https://openalex.org/W2116179833, https://openalex.org/W4200570281, https://openalex.org/W2984432074, https://openalex.org/W2341366677, https://openalex.org/W2021833436, https://openalex.org/W3172744965, https://openalex.org/W2003756933, https://openalex.org/W2897795150, https://openalex.org/W2790702084, https://openalex.org/W3004540582, https://openalex.org/W6753350978, https://openalex.org/W2885544895, https://openalex.org/W2466959513, https://openalex.org/W4220801592, https://openalex.org/W7008388 |
| referenced_works_count | 36 |
| abstract_inverted_index.an | 25 |
| abstract_inverted_index.as | 148 |
| abstract_inverted_index.by | 36 |
| abstract_inverted_index.of | 12, 94, 117, 132, 158 |
| abstract_inverted_index.on | 15, 28 |
| abstract_inverted_index.to | 1, 64 |
| abstract_inverted_index.(RF | 48 |
| abstract_inverted_index.300 | 78 |
| abstract_inverted_index.94% | 137 |
| abstract_inverted_index.CNN | 100 |
| abstract_inverted_index.Due | 0 |
| abstract_inverted_index.KNN | 112 |
| abstract_inverted_index.RF, | 96 |
| abstract_inverted_index.The | 91, 105 |
| abstract_inverted_index.and | 6, 59, 99, 103, 156 |
| abstract_inverted_index.for | 71, 110, 120, 138, 153 |
| abstract_inverted_index.has | 18 |
| abstract_inverted_index.the | 2, 9, 41, 66, 75, 82, 86, 111, 114, 129, 143, 149, 154 |
| abstract_inverted_index.was | 124, 146 |
| abstract_inverted_index.99%. | 126 |
| abstract_inverted_index.KNN, | 95 |
| abstract_inverted_index.LIBS | 38 |
| abstract_inverted_index.SVM, | 97 |
| abstract_inverted_index.This | 22 |
| abstract_inverted_index.back | 53 |
| abstract_inverted_index.find | 65 |
| abstract_inverted_index.most | 67, 150 |
| abstract_inverted_index.only | 128 |
| abstract_inverted_index.wall | 16 |
| abstract_inverted_index.were | 89, 101 |
| abstract_inverted_index.with | 32, 40, 81 |
| abstract_inverted_index.work | 23 |
| abstract_inverted_index.(CNN) | 63 |
| abstract_inverted_index.Using | 74 |
| abstract_inverted_index.above | 125, 136 |
| abstract_inverted_index.among | 85 |
| abstract_inverted_index.great | 20 |
| abstract_inverted_index.lines | 80 |
| abstract_inverted_index.model | 145, 152 |
| abstract_inverted_index.mural | 72, 122, 140, 159 |
| abstract_inverted_index.other | 118 |
| abstract_inverted_index.study | 27 |
| abstract_inverted_index.that, | 108 |
| abstract_inverted_index.three | 29, 87 |
| abstract_inverted_index.(KNN), | 45 |
| abstract_inverted_index.(SVM), | 52 |
| abstract_inverted_index.2D-CNN | 133, 144 |
| abstract_inverted_index.Bp-ANN | 98 |
| abstract_inverted_index.actual | 139 |
| abstract_inverted_index.except | 109 |
| abstract_inverted_index.forest | 47 |
| abstract_inverted_index.matrix | 7 |
| abstract_inverted_index.method | 70 |
| abstract_inverted_index.model, | 113 |
| abstract_inverted_index.models | 93, 119, 134 |
| abstract_inverted_index.neural | 56, 61 |
| abstract_inverted_index.random | 46 |
| abstract_inverted_index.showed | 107 |
| abstract_inverted_index.vector | 50 |
| abstract_inverted_index.brought | 19 |
| abstract_inverted_index.effect, | 8 |
| abstract_inverted_index.largest | 83 |
| abstract_inverted_index.machine | 51 |
| abstract_inverted_index.mineral | 13, 30 |
| abstract_inverted_index.mock-up | 121 |
| abstract_inverted_index.network | 57, 62 |
| abstract_inverted_index.reached | 135 |
| abstract_inverted_index.results | 106 |
| abstract_inverted_index.samples | 123 |
| abstract_inverted_index.similar | 3, 33 |
| abstract_inverted_index.support | 49 |
| abstract_inverted_index.(Bp-ANN) | 58 |
| abstract_inverted_index.However, | 127 |
| abstract_inverted_index.accuracy | 116, 131 |
| abstract_inverted_index.accurate | 10 |
| abstract_inverted_index.analysis | 157 |
| abstract_inverted_index.chemical | 4, 34 |
| abstract_inverted_index.neighbor | 43 |
| abstract_inverted_index.pigments | 14, 31, 88 |
| abstract_inverted_index.samples. | 141 |
| abstract_inverted_index.suitable | 68, 151 |
| abstract_inverted_index.K-nearest | 42 |
| abstract_inverted_index.algorithm | 44 |
| abstract_inverted_index.combining | 37 |
| abstract_inverted_index.paintings | 17 |
| abstract_inverted_index.pigments. | 160 |
| abstract_inverted_index.research. | 73 |
| abstract_inverted_index.Therefore, | 142 |
| abstract_inverted_index.algorithm, | 77 |
| abstract_inverted_index.artificial | 55 |
| abstract_inverted_index.determined | 147 |
| abstract_inverted_index.difference | 84 |
| abstract_inverted_index.optimized. | 104 |
| abstract_inverted_index.technology | 39 |
| abstract_inverted_index.SelectKBest | 76 |
| abstract_inverted_index.challenges. | 21 |
| abstract_inverted_index.composition | 5 |
| abstract_inverted_index.determined. | 90 |
| abstract_inverted_index.established | 102 |
| abstract_inverted_index.implemented | 24 |
| abstract_inverted_index.propagation | 54 |
| abstract_inverted_index.compositions | 35 |
| abstract_inverted_index.convolutional | 60 |
| abstract_inverted_index.characteristic | 79 |
| abstract_inverted_index.identification | 11, 26, 69, 92, 115, 130, 155 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5054559404, https://openalex.org/A5074219762 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I68986083 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.97960945 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |