A comparative study on different background estimation methods for extensive air shower arrays Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2210.00004
Background estimation is essential when studying TeV gamma-ray astronomy for extensive air shower arrays. In this work, by applying four applying four different methods including equi-zenith angle method, surrounding window method, direct integration method, and time-swapping method, the number of the background events is calculated. Based on simulation samples, the statistical significance of the excess signal from different background estimation methods is determined. Following this, we discuss the limits and the applicability of the four methods under different conditions. Under the detector stability assumption with signal, the results from the above four methods are consistent at the 1 sigma level. In the no signal condition, when the acceptance of the detector changes with both space and time, the surrounding window method is most stable and hardly affected. In this acceptance assumption, we find that the background estimation in the direct integration and time-swapping methods are sensitive to the selection of time window, and the shorter time window can reduce the impact on the background estimation to some extent.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2210.00004
- https://arxiv.org/pdf/2210.00004
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4302010015
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4302010015Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2210.00004Digital Object Identifier
- Title
-
A comparative study on different background estimation methods for extensive air shower arraysWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-09-30Full publication date if available
- Authors
-
Yanjin Wang, M. Zha, Shi-Cong Hu, Chuan-Dong Gao, Jianli Zhang, Xin ZhangList of authors in order
- Landing page
-
https://arxiv.org/abs/2210.00004Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2210.00004Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2210.00004Direct OA link when available
- Concepts
-
Window (computing), Detector, Time delay and integration, SIGNAL (programming language), Stability (learning theory), Air shower, Estimation, Selection (genetic algorithm), Statistics, Computer science, Algorithm, Physics, Mathematics, Optics, Artificial intelligence, Engineering, Machine learning, Operating system, Systems engineering, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4302010015 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2210.00004 |
| ids.doi | https://doi.org/10.48550/arxiv.2210.00004 |
| ids.openalex | https://openalex.org/W4302010015 |
| fwci | 0.0 |
| type | preprint |
| title | A comparative study on different background estimation methods for extensive air shower arrays |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10818 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9904999732971191 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | Astrophysics and Cosmic Phenomena |
| topics[1].id | https://openalex.org/T10946 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9652000069618225 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3614 |
| topics[1].subfield.display_name | Radiological and Ultrasound Technology |
| topics[1].display_name | Radioactivity and Radon Measurements |
| topics[2].id | https://openalex.org/T11216 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9632999897003174 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3108 |
| topics[2].subfield.display_name | Radiation |
| topics[2].display_name | Radiation Detection and Scintillator Technologies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2778751112 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6776721477508545 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q835016 |
| concepts[0].display_name | Window (computing) |
| concepts[1].id | https://openalex.org/C94915269 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6480586528778076 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1834857 |
| concepts[1].display_name | Detector |
| concepts[2].id | https://openalex.org/C96566525 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6443872451782227 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7805282 |
| concepts[2].display_name | Time delay and integration |
| concepts[3].id | https://openalex.org/C2779843651 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5320640206336975 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7390335 |
| concepts[3].display_name | SIGNAL (programming language) |
| concepts[4].id | https://openalex.org/C112972136 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5283770561218262 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7595718 |
| concepts[4].display_name | Stability (learning theory) |
| concepts[5].id | https://openalex.org/C151456734 |
| concepts[5].level | 3 |
| concepts[5].score | 0.45703235268592834 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1316958 |
| concepts[5].display_name | Air shower |
| concepts[6].id | https://openalex.org/C96250715 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4398018717765808 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[6].display_name | Estimation |
| concepts[7].id | https://openalex.org/C81917197 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41350674629211426 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[7].display_name | Selection (genetic algorithm) |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3918113112449646 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.36137402057647705 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.34707146883010864 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3327595889568329 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.26461899280548096 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C120665830 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20857444405555725 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[13].display_name | Optics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.11620503664016724 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08613130450248718 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C119857082 |
| concepts[16].level | 1 |
| concepts[16].score | 0.07557311654090881 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[16].display_name | Machine learning |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C201995342 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[18].display_name | Systems engineering |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/window |
| keywords[0].score | 0.6776721477508545 |
| keywords[0].display_name | Window (computing) |
| keywords[1].id | https://openalex.org/keywords/detector |
| keywords[1].score | 0.6480586528778076 |
| keywords[1].display_name | Detector |
| keywords[2].id | https://openalex.org/keywords/time-delay-and-integration |
| keywords[2].score | 0.6443872451782227 |
| keywords[2].display_name | Time delay and integration |
| keywords[3].id | https://openalex.org/keywords/signal |
| keywords[3].score | 0.5320640206336975 |
| keywords[3].display_name | SIGNAL (programming language) |
| keywords[4].id | https://openalex.org/keywords/stability |
| keywords[4].score | 0.5283770561218262 |
| keywords[4].display_name | Stability (learning theory) |
| keywords[5].id | https://openalex.org/keywords/air-shower |
| keywords[5].score | 0.45703235268592834 |
| keywords[5].display_name | Air shower |
| keywords[6].id | https://openalex.org/keywords/estimation |
| keywords[6].score | 0.4398018717765808 |
| keywords[6].display_name | Estimation |
| keywords[7].id | https://openalex.org/keywords/selection |
| keywords[7].score | 0.41350674629211426 |
| keywords[7].display_name | Selection (genetic algorithm) |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.3918113112449646 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.36137402057647705 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.34707146883010864 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.3327595889568329 |
| keywords[11].display_name | Physics |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.26461899280548096 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/optics |
| keywords[13].score | 0.20857444405555725 |
| keywords[13].display_name | Optics |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.11620503664016724 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.08613130450248718 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/machine-learning |
| keywords[16].score | 0.07557311654090881 |
| keywords[16].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2210.00004 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2210.00004 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2210.00004 |
| locations[1].id | doi:10.48550/arxiv.2210.00004 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2210.00004 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5027157242 |
| authorships[0].author.orcid | https://orcid.org/0009-0003-8270-0288 |
| authorships[0].author.display_name | Yanjin Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Yan-Jin |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5028246319 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6911-5119 |
| authorships[1].author.display_name | M. Zha |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zha, Min |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5045666843 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Shi-Cong Hu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hu, Shi-Cong |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5032160402 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chuan-Dong Gao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gao, Chuan-Dong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100614643 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0388-3043 |
| authorships[4].author.display_name | Jianli Zhang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhang, Jian-Li |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100327487 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6029-1933 |
| authorships[5].author.display_name | Xin Zhang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Zhang, Xin |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2210.00004 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A comparative study on different background estimation methods for extensive air shower arrays |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10818 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9904999732971191 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | Astrophysics and Cosmic Phenomena |
| related_works | https://openalex.org/W2109115373, https://openalex.org/W2390901981, https://openalex.org/W2366906938, https://openalex.org/W188389732, https://openalex.org/W1630336912, https://openalex.org/W2349391998, https://openalex.org/W2156230213, https://openalex.org/W4205655149, https://openalex.org/W4230691760, https://openalex.org/W3162397156 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2210.00004 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2210.00004 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2210.00004 |
| primary_location.id | pmh:oai:arXiv.org:2210.00004 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2210.00004 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2210.00004 |
| publication_date | 2022-09-30 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.1 | 97 |
| abstract_inverted_index.In | 14, 100, 127 |
| abstract_inverted_index.at | 95 |
| abstract_inverted_index.by | 17 |
| abstract_inverted_index.in | 137 |
| abstract_inverted_index.is | 2, 43, 61, 121 |
| abstract_inverted_index.no | 102 |
| abstract_inverted_index.of | 39, 52, 72, 108, 149 |
| abstract_inverted_index.on | 46, 161 |
| abstract_inverted_index.to | 146, 165 |
| abstract_inverted_index.we | 65, 131 |
| abstract_inverted_index.TeV | 6 |
| abstract_inverted_index.air | 11 |
| abstract_inverted_index.and | 34, 69, 115, 124, 141, 152 |
| abstract_inverted_index.are | 93, 144 |
| abstract_inverted_index.can | 157 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.the | 37, 40, 49, 53, 67, 70, 73, 80, 86, 89, 96, 101, 106, 109, 117, 134, 138, 147, 153, 159, 162 |
| abstract_inverted_index.both | 113 |
| abstract_inverted_index.find | 132 |
| abstract_inverted_index.four | 19, 21, 74, 91 |
| abstract_inverted_index.from | 56, 88 |
| abstract_inverted_index.most | 122 |
| abstract_inverted_index.some | 166 |
| abstract_inverted_index.that | 133 |
| abstract_inverted_index.this | 15, 128 |
| abstract_inverted_index.time | 150, 155 |
| abstract_inverted_index.when | 4, 105 |
| abstract_inverted_index.with | 84, 112 |
| abstract_inverted_index.Based | 45 |
| abstract_inverted_index.Under | 79 |
| abstract_inverted_index.above | 90 |
| abstract_inverted_index.angle | 26 |
| abstract_inverted_index.sigma | 98 |
| abstract_inverted_index.space | 114 |
| abstract_inverted_index.this, | 64 |
| abstract_inverted_index.time, | 116 |
| abstract_inverted_index.under | 76 |
| abstract_inverted_index.work, | 16 |
| abstract_inverted_index.direct | 31, 139 |
| abstract_inverted_index.events | 42 |
| abstract_inverted_index.excess | 54 |
| abstract_inverted_index.hardly | 125 |
| abstract_inverted_index.impact | 160 |
| abstract_inverted_index.level. | 99 |
| abstract_inverted_index.limits | 68 |
| abstract_inverted_index.method | 120 |
| abstract_inverted_index.number | 38 |
| abstract_inverted_index.reduce | 158 |
| abstract_inverted_index.shower | 12 |
| abstract_inverted_index.signal | 55, 103 |
| abstract_inverted_index.stable | 123 |
| abstract_inverted_index.window | 29, 119, 156 |
| abstract_inverted_index.arrays. | 13 |
| abstract_inverted_index.changes | 111 |
| abstract_inverted_index.discuss | 66 |
| abstract_inverted_index.extent. | 167 |
| abstract_inverted_index.method, | 27, 30, 33, 36 |
| abstract_inverted_index.methods | 23, 60, 75, 92, 143 |
| abstract_inverted_index.results | 87 |
| abstract_inverted_index.shorter | 154 |
| abstract_inverted_index.signal, | 85 |
| abstract_inverted_index.window, | 151 |
| abstract_inverted_index.applying | 18, 20 |
| abstract_inverted_index.detector | 81, 110 |
| abstract_inverted_index.samples, | 48 |
| abstract_inverted_index.studying | 5 |
| abstract_inverted_index.Following | 63 |
| abstract_inverted_index.affected. | 126 |
| abstract_inverted_index.astronomy | 8 |
| abstract_inverted_index.different | 22, 57, 77 |
| abstract_inverted_index.essential | 3 |
| abstract_inverted_index.extensive | 10 |
| abstract_inverted_index.gamma-ray | 7 |
| abstract_inverted_index.including | 24 |
| abstract_inverted_index.selection | 148 |
| abstract_inverted_index.sensitive | 145 |
| abstract_inverted_index.stability | 82 |
| abstract_inverted_index.Background | 0 |
| abstract_inverted_index.acceptance | 107, 129 |
| abstract_inverted_index.assumption | 83 |
| abstract_inverted_index.background | 41, 58, 135, 163 |
| abstract_inverted_index.condition, | 104 |
| abstract_inverted_index.consistent | 94 |
| abstract_inverted_index.estimation | 1, 59, 136, 164 |
| abstract_inverted_index.simulation | 47 |
| abstract_inverted_index.assumption, | 130 |
| abstract_inverted_index.calculated. | 44 |
| abstract_inverted_index.conditions. | 78 |
| abstract_inverted_index.determined. | 62 |
| abstract_inverted_index.equi-zenith | 25 |
| abstract_inverted_index.integration | 32, 140 |
| abstract_inverted_index.statistical | 50 |
| abstract_inverted_index.surrounding | 28, 118 |
| abstract_inverted_index.significance | 51 |
| abstract_inverted_index.applicability | 71 |
| abstract_inverted_index.time-swapping | 35, 142 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.04350188 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |