A Comparison of Neural-Network and Surrogate-Severe Probabilistic Convective Hazard Guidance Derived from a Convection-Allowing Model Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1175/waf-d-20-0036.1
A feed-forward neural network (NN) was trained to produce gridded probabilistic convective hazard predictions over the contiguous United States. Input fields to the NN included 174 predictors, derived from 38 variables output by 497 convection-allowing model forecasts, with observed severe storm reports used for training and verification. These NN probability forecasts (NNPFs) were compared to surrogate-severe probability forecasts (SSPFs), generated by smoothing a field of surrogate reports derived with updraft helicity (UH). NNPFs and SSPFs were produced each forecast hour on an 80-km grid, with forecasts valid for the occurrence of any severe weather report within 40 or 120 km, and 2 h, of each 80-km grid box. NNPFs were superior to SSPFs, producing statistically significant improvements in forecast reliability and resolution. Additionally, NNPFs retained more large magnitude probabilities (>50%) compared to SSPFs since NNPFs did not use spatial smoothing, improving forecast sharpness. NNPFs were most skillful relative to SSPFs when predicting hazards on larger scales (e.g., 120 vs 40 km) and in situations where using UH was detrimental to forecast skill. These included model spinup, nocturnal periods, and regions and environments where supercells were less common, such as the western and eastern United States and high-shear, low-CAPE regimes. NNPFs trained with fewer predictors were more skillful than SSPFs, but not as skillful as the full-predictor NNPFs, with predictor importance being a function of forecast lead time. Placing NNPF skill in the context of existing baselines is a first step toward integrating machine learning–based forecasts into the operational forecasting process.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1175/waf-d-20-0036.1
- https://journals.ametsoc.org/downloadpdf/journals/wefo/35/5/wafD200036.pdf
- OA Status
- bronze
- Cited By
- 31
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3077522170
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3077522170Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1175/waf-d-20-0036.1Digital Object Identifier
- Title
-
A Comparison of Neural-Network and Surrogate-Severe Probabilistic Convective Hazard Guidance Derived from a Convection-Allowing ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-08-18Full publication date if available
- Authors
-
Ryan A. Sobash, Glen S. Romine, Craig S. SchwartzList of authors in order
- Landing page
-
https://doi.org/10.1175/waf-d-20-0036.1Publisher landing page
- PDF URL
-
https://journals.ametsoc.org/downloadpdf/journals/wefo/35/5/wafD200036.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://journals.ametsoc.org/downloadpdf/journals/wefo/35/5/wafD200036.pdfDirect OA link when available
- Concepts
-
Context (archaeology), Smoothing, Forecast skill, Probabilistic logic, Meteorology, Convective storm detection, Environmental science, Artificial neural network, Grid, Convection, Storm, Computer science, Statistics, Artificial intelligence, Mathematics, Geography, Archaeology, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
31Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 10, 2023: 5, 2022: 7, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3077522170 |
|---|---|
| doi | https://doi.org/10.1175/waf-d-20-0036.1 |
| ids.doi | https://doi.org/10.1175/waf-d-20-0036.1 |
| ids.mag | 3077522170 |
| ids.openalex | https://openalex.org/W3077522170 |
| fwci | 1.66832436 |
| type | article |
| title | A Comparison of Neural-Network and Surrogate-Severe Probabilistic Convective Hazard Guidance Derived from a Convection-Allowing Model |
| awards[0].id | https://openalex.org/G1059894484 |
| awards[0].funder_id | https://openalex.org/F4320337784 |
| awards[0].display_name | |
| awards[0].funder_award_id | NA19OAR4590128 |
| awards[0].funder_display_name | NOAA Research |
| biblio.issue | 5 |
| biblio.volume | 35 |
| biblio.last_page | 2000 |
| biblio.first_page | 1981 |
| topics[0].id | https://openalex.org/T10466 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Meteorological Phenomena and Simulations |
| topics[1].id | https://openalex.org/T10029 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9998000264167786 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Climate variability and models |
| topics[2].id | https://openalex.org/T11371 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9986000061035156 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Wind and Air Flow Studies |
| funders[0].id | https://openalex.org/F4320337784 |
| funders[0].ror | https://ror.org/02kgve346 |
| funders[0].display_name | NOAA Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779343474 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6140710711479187 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[0].display_name | Context (archaeology) |
| concepts[1].id | https://openalex.org/C3770464 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5803353190422058 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q775963 |
| concepts[1].display_name | Smoothing |
| concepts[2].id | https://openalex.org/C170061395 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5710189938545227 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q5468164 |
| concepts[2].display_name | Forecast skill |
| concepts[3].id | https://openalex.org/C49937458 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5672072768211365 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[3].display_name | Probabilistic logic |
| concepts[4].id | https://openalex.org/C153294291 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4991331100463867 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[4].display_name | Meteorology |
| concepts[5].id | https://openalex.org/C192932206 |
| concepts[5].level | 3 |
| concepts[5].score | 0.4975598156452179 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q16951299 |
| concepts[5].display_name | Convective storm detection |
| concepts[6].id | https://openalex.org/C39432304 |
| concepts[6].level | 0 |
| concepts[6].score | 0.46782487630844116 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[6].display_name | Environmental science |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.456976979970932 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C187691185 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4297310709953308 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2020720 |
| concepts[8].display_name | Grid |
| concepts[9].id | https://openalex.org/C10899652 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4267590045928955 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q160329 |
| concepts[9].display_name | Convection |
| concepts[10].id | https://openalex.org/C105306849 |
| concepts[10].level | 2 |
| concepts[10].score | 0.41126304864883423 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q81054 |
| concepts[10].display_name | Storm |
| concepts[11].id | https://openalex.org/C41008148 |
| concepts[11].level | 0 |
| concepts[11].score | 0.4107930064201355 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[11].display_name | Computer science |
| concepts[12].id | https://openalex.org/C105795698 |
| concepts[12].level | 1 |
| concepts[12].score | 0.27885764837265015 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[12].display_name | Statistics |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.23357301950454712 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.2204405963420868 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1639443039894104 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C166957645 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[16].display_name | Archaeology |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/context |
| keywords[0].score | 0.6140710711479187 |
| keywords[0].display_name | Context (archaeology) |
| keywords[1].id | https://openalex.org/keywords/smoothing |
| keywords[1].score | 0.5803353190422058 |
| keywords[1].display_name | Smoothing |
| keywords[2].id | https://openalex.org/keywords/forecast-skill |
| keywords[2].score | 0.5710189938545227 |
| keywords[2].display_name | Forecast skill |
| keywords[3].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[3].score | 0.5672072768211365 |
| keywords[3].display_name | Probabilistic logic |
| keywords[4].id | https://openalex.org/keywords/meteorology |
| keywords[4].score | 0.4991331100463867 |
| keywords[4].display_name | Meteorology |
| keywords[5].id | https://openalex.org/keywords/convective-storm-detection |
| keywords[5].score | 0.4975598156452179 |
| keywords[5].display_name | Convective storm detection |
| keywords[6].id | https://openalex.org/keywords/environmental-science |
| keywords[6].score | 0.46782487630844116 |
| keywords[6].display_name | Environmental science |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.456976979970932 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/grid |
| keywords[8].score | 0.4297310709953308 |
| keywords[8].display_name | Grid |
| keywords[9].id | https://openalex.org/keywords/convection |
| keywords[9].score | 0.4267590045928955 |
| keywords[9].display_name | Convection |
| keywords[10].id | https://openalex.org/keywords/storm |
| keywords[10].score | 0.41126304864883423 |
| keywords[10].display_name | Storm |
| keywords[11].id | https://openalex.org/keywords/computer-science |
| keywords[11].score | 0.4107930064201355 |
| keywords[11].display_name | Computer science |
| keywords[12].id | https://openalex.org/keywords/statistics |
| keywords[12].score | 0.27885764837265015 |
| keywords[12].display_name | Statistics |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.23357301950454712 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.2204405963420868 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.1639443039894104 |
| keywords[15].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1175/waf-d-20-0036.1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S203100778 |
| locations[0].source.issn | 0882-8156, 1520-0434 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0882-8156 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Weather and Forecasting |
| locations[0].source.host_organization | https://openalex.org/P4310320260 |
| locations[0].source.host_organization_name | American Meteorological Society |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320260 |
| locations[0].source.host_organization_lineage_names | American Meteorological Society |
| locations[0].license | |
| locations[0].pdf_url | https://journals.ametsoc.org/downloadpdf/journals/wefo/35/5/wafD200036.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Weather and Forecasting |
| locations[0].landing_page_url | https://doi.org/10.1175/waf-d-20-0036.1 |
| locations[1].id | pmh:oai:noaa.stacks:noaa:60435 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196172 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | NOAA Institutional Repository |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | public-domain |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | https://openalex.org/licenses/public-domain |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Weather and Forecasting, 35(5), 1981-2000 |
| locations[1].landing_page_url | https://repository.library.noaa.gov/view/noaa/60435 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5083160107 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ryan A. Sobash |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I107766831 |
| authorships[0].affiliations[0].raw_affiliation_string | National Center for Atmospheric Research, Boulder, Colorado |
| authorships[0].institutions[0].id | https://openalex.org/I107766831 |
| authorships[0].institutions[0].ror | https://ror.org/05cvfcr44 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I107766831, https://openalex.org/I1311060795, https://openalex.org/I2799356940, https://openalex.org/I4210141337, https://openalex.org/I4210150888 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | NSF National Center for Atmospheric Research |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ryan A. Sobash |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | National Center for Atmospheric Research, Boulder, Colorado |
| authorships[1].author.id | https://openalex.org/A5014573151 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Glen S. Romine |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I107766831 |
| authorships[1].affiliations[0].raw_affiliation_string | National Center for Atmospheric Research, Boulder, Colorado |
| authorships[1].institutions[0].id | https://openalex.org/I107766831 |
| authorships[1].institutions[0].ror | https://ror.org/05cvfcr44 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I107766831, https://openalex.org/I1311060795, https://openalex.org/I2799356940, https://openalex.org/I4210141337, https://openalex.org/I4210150888 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | NSF National Center for Atmospheric Research |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Glen S. Romine |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | National Center for Atmospheric Research, Boulder, Colorado |
| authorships[2].author.id | https://openalex.org/A5035325621 |
| authorships[2].author.orcid | https://orcid.org/0009-0006-5887-4386 |
| authorships[2].author.display_name | Craig S. Schwartz |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I107766831 |
| authorships[2].affiliations[0].raw_affiliation_string | National Center for Atmospheric Research, Boulder, Colorado |
| authorships[2].institutions[0].id | https://openalex.org/I107766831 |
| authorships[2].institutions[0].ror | https://ror.org/05cvfcr44 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I107766831, https://openalex.org/I1311060795, https://openalex.org/I2799356940, https://openalex.org/I4210141337, https://openalex.org/I4210150888 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | NSF National Center for Atmospheric Research |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Craig S. Schwartz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | National Center for Atmospheric Research, Boulder, Colorado |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.ametsoc.org/downloadpdf/journals/wefo/35/5/wafD200036.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2020-08-24T00:00:00 |
| display_name | A Comparison of Neural-Network and Surrogate-Severe Probabilistic Convective Hazard Guidance Derived from a Convection-Allowing Model |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10466 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Meteorological Phenomena and Simulations |
| related_works | https://openalex.org/W3210370123, https://openalex.org/W2350875051, https://openalex.org/W2618593970, https://openalex.org/W2607216808, https://openalex.org/W2105544496, https://openalex.org/W2063713183, https://openalex.org/W3114111423, https://openalex.org/W2064060715, https://openalex.org/W2179071516, https://openalex.org/W2743153755 |
| cited_by_count | 31 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 10 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1175/waf-d-20-0036.1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S203100778 |
| best_oa_location.source.issn | 0882-8156, 1520-0434 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0882-8156 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Weather and Forecasting |
| best_oa_location.source.host_organization | https://openalex.org/P4310320260 |
| best_oa_location.source.host_organization_name | American Meteorological Society |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320260 |
| best_oa_location.source.host_organization_lineage_names | American Meteorological Society |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://journals.ametsoc.org/downloadpdf/journals/wefo/35/5/wafD200036.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Weather and Forecasting |
| best_oa_location.landing_page_url | https://doi.org/10.1175/waf-d-20-0036.1 |
| primary_location.id | doi:10.1175/waf-d-20-0036.1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S203100778 |
| primary_location.source.issn | 0882-8156, 1520-0434 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0882-8156 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Weather and Forecasting |
| primary_location.source.host_organization | https://openalex.org/P4310320260 |
| primary_location.source.host_organization_name | American Meteorological Society |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320260 |
| primary_location.source.host_organization_lineage_names | American Meteorological Society |
| primary_location.license | |
| primary_location.pdf_url | https://journals.ametsoc.org/downloadpdf/journals/wefo/35/5/wafD200036.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Weather and Forecasting |
| primary_location.landing_page_url | https://doi.org/10.1175/waf-d-20-0036.1 |
| publication_date | 2020-08-18 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2901851762, https://openalex.org/W2970058087, https://openalex.org/W2911964244, https://openalex.org/W3002177037, https://openalex.org/W2989751705, https://openalex.org/W2531078600, https://openalex.org/W2119007429, https://openalex.org/W2137586905, https://openalex.org/W2077360464, https://openalex.org/W6910975597, https://openalex.org/W1991132706, https://openalex.org/W2807535851, https://openalex.org/W2743153755, https://openalex.org/W2947707259, https://openalex.org/W2229759802, https://openalex.org/W2787546361, https://openalex.org/W2971685424, https://openalex.org/W2904569308, https://openalex.org/W2801493395, https://openalex.org/W2110179017, https://openalex.org/W1987238719, https://openalex.org/W2104484944, https://openalex.org/W2059332606, https://openalex.org/W2077017693, https://openalex.org/W2990985257, https://openalex.org/W2770594110, https://openalex.org/W2621035368, https://openalex.org/W1513732820, https://openalex.org/W2154939804, https://openalex.org/W2601923741, https://openalex.org/W2969309273, https://openalex.org/W2038742869, https://openalex.org/W2083339292, https://openalex.org/W6675354045, https://openalex.org/W2966074324, https://openalex.org/W2142945594, https://openalex.org/W2802316400, https://openalex.org/W2600594794, https://openalex.org/W2968863258, https://openalex.org/W2126975595, https://openalex.org/W2528344083, https://openalex.org/W2915783575, https://openalex.org/W2170641918, https://openalex.org/W2753861627, https://openalex.org/W1974680387, https://openalex.org/W2508885863, https://openalex.org/W2950309365, https://openalex.org/W1987461785, https://openalex.org/W2103680334, https://openalex.org/W2153529786, https://openalex.org/W2784556445, https://openalex.org/W2797242709, https://openalex.org/W2797028719, https://openalex.org/W2795287572, https://openalex.org/W2101234009 |
| referenced_works_count | 55 |
| abstract_inverted_index.2 | 102 |
| abstract_inverted_index.A | 1 |
| abstract_inverted_index.a | 63, 222, 238 |
| abstract_inverted_index.38 | 30 |
| abstract_inverted_index.40 | 97, 160 |
| abstract_inverted_index.NN | 24, 49 |
| abstract_inverted_index.UH | 167 |
| abstract_inverted_index.an | 82 |
| abstract_inverted_index.as | 189, 212, 214 |
| abstract_inverted_index.by | 33, 61 |
| abstract_inverted_index.h, | 103 |
| abstract_inverted_index.in | 118, 163, 231 |
| abstract_inverted_index.is | 237 |
| abstract_inverted_index.of | 65, 91, 104, 224, 234 |
| abstract_inverted_index.on | 81, 154 |
| abstract_inverted_index.or | 98 |
| abstract_inverted_index.to | 8, 22, 55, 112, 132, 149, 170 |
| abstract_inverted_index.vs | 159 |
| abstract_inverted_index.120 | 99, 158 |
| abstract_inverted_index.174 | 26 |
| abstract_inverted_index.497 | 34 |
| abstract_inverted_index.and | 46, 74, 101, 121, 162, 179, 181, 192, 196 |
| abstract_inverted_index.any | 92 |
| abstract_inverted_index.but | 210 |
| abstract_inverted_index.did | 136 |
| abstract_inverted_index.for | 44, 88 |
| abstract_inverted_index.km) | 161 |
| abstract_inverted_index.km, | 100 |
| abstract_inverted_index.not | 137, 211 |
| abstract_inverted_index.the | 16, 23, 89, 190, 215, 232, 247 |
| abstract_inverted_index.use | 138 |
| abstract_inverted_index.was | 6, 168 |
| abstract_inverted_index.(NN) | 5 |
| abstract_inverted_index.NNPF | 229 |
| abstract_inverted_index.box. | 108 |
| abstract_inverted_index.each | 78, 105 |
| abstract_inverted_index.from | 29 |
| abstract_inverted_index.grid | 107 |
| abstract_inverted_index.hour | 80 |
| abstract_inverted_index.into | 246 |
| abstract_inverted_index.lead | 226 |
| abstract_inverted_index.less | 186 |
| abstract_inverted_index.more | 126, 206 |
| abstract_inverted_index.most | 146 |
| abstract_inverted_index.over | 15 |
| abstract_inverted_index.step | 240 |
| abstract_inverted_index.such | 188 |
| abstract_inverted_index.than | 208 |
| abstract_inverted_index.used | 43 |
| abstract_inverted_index.were | 53, 76, 110, 145, 185, 205 |
| abstract_inverted_index.when | 151 |
| abstract_inverted_index.with | 38, 69, 85, 202, 218 |
| abstract_inverted_index.(UH). | 72 |
| abstract_inverted_index.80-km | 83, 106 |
| abstract_inverted_index.Input | 20 |
| abstract_inverted_index.NNPFs | 73, 109, 124, 135, 144, 200 |
| abstract_inverted_index.SSPFs | 75, 133, 150 |
| abstract_inverted_index.These | 48, 173 |
| abstract_inverted_index.being | 221 |
| abstract_inverted_index.fewer | 203 |
| abstract_inverted_index.field | 64 |
| abstract_inverted_index.first | 239 |
| abstract_inverted_index.grid, | 84 |
| abstract_inverted_index.large | 127 |
| abstract_inverted_index.model | 36, 175 |
| abstract_inverted_index.since | 134 |
| abstract_inverted_index.skill | 230 |
| abstract_inverted_index.storm | 41 |
| abstract_inverted_index.time. | 227 |
| abstract_inverted_index.using | 166 |
| abstract_inverted_index.valid | 87 |
| abstract_inverted_index.where | 165, 183 |
| abstract_inverted_index.(e.g., | 157 |
| abstract_inverted_index.NNPFs, | 217 |
| abstract_inverted_index.SSPFs, | 113, 209 |
| abstract_inverted_index.States | 195 |
| abstract_inverted_index.United | 18, 194 |
| abstract_inverted_index.fields | 21 |
| abstract_inverted_index.hazard | 13 |
| abstract_inverted_index.larger | 155 |
| abstract_inverted_index.neural | 3 |
| abstract_inverted_index.output | 32 |
| abstract_inverted_index.report | 95 |
| abstract_inverted_index.scales | 156 |
| abstract_inverted_index.severe | 40, 93 |
| abstract_inverted_index.skill. | 172 |
| abstract_inverted_index.toward | 241 |
| abstract_inverted_index.within | 96 |
| abstract_inverted_index.(NNPFs) | 52 |
| abstract_inverted_index.Placing | 228 |
| abstract_inverted_index.States. | 19 |
| abstract_inverted_index.common, | 187 |
| abstract_inverted_index.context | 233 |
| abstract_inverted_index.derived | 28, 68 |
| abstract_inverted_index.eastern | 193 |
| abstract_inverted_index.gridded | 10 |
| abstract_inverted_index.hazards | 153 |
| abstract_inverted_index.machine | 243 |
| abstract_inverted_index.network | 4 |
| abstract_inverted_index.produce | 9 |
| abstract_inverted_index.regions | 180 |
| abstract_inverted_index.reports | 42, 67 |
| abstract_inverted_index.spatial | 139 |
| abstract_inverted_index.spinup, | 176 |
| abstract_inverted_index.trained | 7, 201 |
| abstract_inverted_index.updraft | 70 |
| abstract_inverted_index.weather | 94 |
| abstract_inverted_index.western | 191 |
| abstract_inverted_index.(SSPFs), | 59 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.compared | 54, 131 |
| abstract_inverted_index.existing | 235 |
| abstract_inverted_index.forecast | 79, 119, 142, 171, 225 |
| abstract_inverted_index.function | 223 |
| abstract_inverted_index.helicity | 71 |
| abstract_inverted_index.included | 25, 174 |
| abstract_inverted_index.low-CAPE | 198 |
| abstract_inverted_index.observed | 39 |
| abstract_inverted_index.periods, | 178 |
| abstract_inverted_index.process. | 250 |
| abstract_inverted_index.produced | 77 |
| abstract_inverted_index.regimes. | 199 |
| abstract_inverted_index.relative | 148 |
| abstract_inverted_index.retained | 125 |
| abstract_inverted_index.skillful | 147, 207, 213 |
| abstract_inverted_index.superior | 111 |
| abstract_inverted_index.training | 45 |
| abstract_inverted_index.(>50%) | 130 |
| abstract_inverted_index.baselines | 236 |
| abstract_inverted_index.forecasts | 51, 58, 86, 245 |
| abstract_inverted_index.generated | 60 |
| abstract_inverted_index.improving | 141 |
| abstract_inverted_index.magnitude | 128 |
| abstract_inverted_index.nocturnal | 177 |
| abstract_inverted_index.predictor | 219 |
| abstract_inverted_index.producing | 114 |
| abstract_inverted_index.smoothing | 62 |
| abstract_inverted_index.surrogate | 66 |
| abstract_inverted_index.variables | 31 |
| abstract_inverted_index.contiguous | 17 |
| abstract_inverted_index.convective | 12 |
| abstract_inverted_index.forecasts, | 37 |
| abstract_inverted_index.importance | 220 |
| abstract_inverted_index.occurrence | 90 |
| abstract_inverted_index.predicting | 152 |
| abstract_inverted_index.predictors | 204 |
| abstract_inverted_index.sharpness. | 143 |
| abstract_inverted_index.situations | 164 |
| abstract_inverted_index.smoothing, | 140 |
| abstract_inverted_index.supercells | 184 |
| abstract_inverted_index.detrimental | 169 |
| abstract_inverted_index.forecasting | 249 |
| abstract_inverted_index.high-shear, | 197 |
| abstract_inverted_index.integrating | 242 |
| abstract_inverted_index.operational | 248 |
| abstract_inverted_index.predictions | 14 |
| abstract_inverted_index.predictors, | 27 |
| abstract_inverted_index.probability | 50, 57 |
| abstract_inverted_index.reliability | 120 |
| abstract_inverted_index.resolution. | 122 |
| abstract_inverted_index.significant | 116 |
| abstract_inverted_index.environments | 182 |
| abstract_inverted_index.feed-forward | 2 |
| abstract_inverted_index.improvements | 117 |
| abstract_inverted_index.Additionally, | 123 |
| abstract_inverted_index.probabilistic | 11 |
| abstract_inverted_index.probabilities | 129 |
| abstract_inverted_index.statistically | 115 |
| abstract_inverted_index.verification. | 47 |
| abstract_inverted_index.full-predictor | 216 |
| abstract_inverted_index.learning–based | 244 |
| abstract_inverted_index.surrogate-severe | 56 |
| abstract_inverted_index.convection-allowing | 35 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5083160107 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I107766831 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.84693878 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |