A Comprehensive Algorithm for Evaluating Node Influences in Social Networks Based on Preference Analysis and Random Walk Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.1155/2018/1528341
In the era of big data, social network has become an important reflection of human communications and interactions on the Internet. Identifying the influential spreaders in networks plays a crucial role in various areas, such as disease outbreak, virus propagation, and public opinion controlling. Based on the three basic centrality measures, a comprehensive algorithm named PARW‐Rank for evaluating node influences has been proposed by applying preference relation analysis and random walk technique. For each basic measure, the preference relation between every node pair in a network is analyzed to construct the partial preference graph (PPG). Then, the comprehensive preference graph (CPG) is generated by combining the preference relations with respect to three basic measures. Finally, the ranking of nodes is determined by conducting random walk on the CPG. Furthermore, five public social networks are used for comparative analysis. The experimental results show that our PARW‐Rank algorithm can achieve the higher precision and better stability than the existing methods with a single centrality measure.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1155/2018/1528341
- http://downloads.hindawi.com/journals/complexity/2018/1528341.pdf
- OA Status
- gold
- Cited By
- 24
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2895194374
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2895194374Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1155/2018/1528341Digital Object Identifier
- Title
-
A Comprehensive Algorithm for Evaluating Node Influences in Social Networks Based on Preference Analysis and Random WalkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-01Full publication date if available
- Authors
-
Chengying Mao, Weisong XiaoList of authors in order
- Landing page
-
https://doi.org/10.1155/2018/1528341Publisher landing page
- PDF URL
-
https://downloads.hindawi.com/journals/complexity/2018/1528341.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://downloads.hindawi.com/journals/complexity/2018/1528341.pdfDirect OA link when available
- Concepts
-
Centrality, Random walk, Preference, Computer science, Ranking (information retrieval), Graph, Rank (graph theory), Relation (database), Node (physics), Measure (data warehouse), Theoretical computer science, Data mining, Algorithm, Artificial intelligence, Mathematics, Statistics, Engineering, Structural engineering, CombinatoricsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
24Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 1, 2022: 5, 2021: 7Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2895194374 |
|---|---|
| doi | https://doi.org/10.1155/2018/1528341 |
| ids.doi | https://doi.org/10.1155/2018/1528341 |
| ids.mag | 2895194374 |
| ids.openalex | https://openalex.org/W2895194374 |
| fwci | 2.19042633 |
| type | article |
| title | A Comprehensive Algorithm for Evaluating Node Influences in Social Networks Based on Preference Analysis and Random Walk |
| awards[0].id | https://openalex.org/G7138338358 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61462030 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G8327105179 |
| awards[1].funder_id | https://openalex.org/F4320322665 |
| awards[1].display_name | |
| awards[1].funder_award_id | 20171ACB21031 |
| awards[1].funder_display_name | Natural Science Foundation of Jiangxi Province |
| awards[2].id | https://openalex.org/G1448539693 |
| awards[2].funder_id | https://openalex.org/F4320322665 |
| awards[2].display_name | |
| awards[2].funder_award_id | 20162BCB23036 |
| awards[2].funder_display_name | Natural Science Foundation of Jiangxi Province |
| awards[3].id | https://openalex.org/G7796799307 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 61762040 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 2018 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10064 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Complex Network Analysis Techniques |
| topics[1].id | https://openalex.org/T12592 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9940999746322632 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Opinion Dynamics and Social Influence |
| topics[2].id | https://openalex.org/T11273 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.977400004863739 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Graph Neural Networks |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322665 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Jiangxi Province |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | USD |
| apc_list.value_usd | 2300 |
| apc_paid.value | 2300 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2300 |
| concepts[0].id | https://openalex.org/C53811970 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8524259924888611 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5062194 |
| concepts[0].display_name | Centrality |
| concepts[1].id | https://openalex.org/C121194460 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6704110503196716 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q856741 |
| concepts[1].display_name | Random walk |
| concepts[2].id | https://openalex.org/C2781249084 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6699091196060181 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q908656 |
| concepts[2].display_name | Preference |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6438987255096436 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C189430467 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5761710405349731 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[4].display_name | Ranking (information retrieval) |
| concepts[5].id | https://openalex.org/C132525143 |
| concepts[5].level | 2 |
| concepts[5].score | 0.550321102142334 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[5].display_name | Graph |
| concepts[6].id | https://openalex.org/C164226766 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5119115114212036 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7293202 |
| concepts[6].display_name | Rank (graph theory) |
| concepts[7].id | https://openalex.org/C25343380 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49828195571899414 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[7].display_name | Relation (database) |
| concepts[8].id | https://openalex.org/C62611344 |
| concepts[8].level | 2 |
| concepts[8].score | 0.48414379358291626 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[8].display_name | Node (physics) |
| concepts[9].id | https://openalex.org/C2780009758 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4244529902935028 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[9].display_name | Measure (data warehouse) |
| concepts[10].id | https://openalex.org/C80444323 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4010659158229828 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[10].display_name | Theoretical computer science |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.39873838424682617 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C11413529 |
| concepts[12].level | 1 |
| concepts[12].score | 0.3737832009792328 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[12].display_name | Algorithm |
| concepts[13].id | https://openalex.org/C154945302 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3282959461212158 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[13].display_name | Artificial intelligence |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.24934819340705872 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C105795698 |
| concepts[15].level | 1 |
| concepts[15].score | 0.19986316561698914 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[15].display_name | Statistics |
| concepts[16].id | https://openalex.org/C127413603 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[16].display_name | Engineering |
| concepts[17].id | https://openalex.org/C66938386 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[17].display_name | Structural engineering |
| concepts[18].id | https://openalex.org/C114614502 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[18].display_name | Combinatorics |
| keywords[0].id | https://openalex.org/keywords/centrality |
| keywords[0].score | 0.8524259924888611 |
| keywords[0].display_name | Centrality |
| keywords[1].id | https://openalex.org/keywords/random-walk |
| keywords[1].score | 0.6704110503196716 |
| keywords[1].display_name | Random walk |
| keywords[2].id | https://openalex.org/keywords/preference |
| keywords[2].score | 0.6699091196060181 |
| keywords[2].display_name | Preference |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6438987255096436 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/ranking |
| keywords[4].score | 0.5761710405349731 |
| keywords[4].display_name | Ranking (information retrieval) |
| keywords[5].id | https://openalex.org/keywords/graph |
| keywords[5].score | 0.550321102142334 |
| keywords[5].display_name | Graph |
| keywords[6].id | https://openalex.org/keywords/rank |
| keywords[6].score | 0.5119115114212036 |
| keywords[6].display_name | Rank (graph theory) |
| keywords[7].id | https://openalex.org/keywords/relation |
| keywords[7].score | 0.49828195571899414 |
| keywords[7].display_name | Relation (database) |
| keywords[8].id | https://openalex.org/keywords/node |
| keywords[8].score | 0.48414379358291626 |
| keywords[8].display_name | Node (physics) |
| keywords[9].id | https://openalex.org/keywords/measure |
| keywords[9].score | 0.4244529902935028 |
| keywords[9].display_name | Measure (data warehouse) |
| keywords[10].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[10].score | 0.4010659158229828 |
| keywords[10].display_name | Theoretical computer science |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.39873838424682617 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/algorithm |
| keywords[12].score | 0.3737832009792328 |
| keywords[12].display_name | Algorithm |
| keywords[13].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[13].score | 0.3282959461212158 |
| keywords[13].display_name | Artificial intelligence |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.24934819340705872 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/statistics |
| keywords[15].score | 0.19986316561698914 |
| keywords[15].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1155/2018/1528341 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S207319443 |
| locations[0].source.issn | 1076-2787, 1099-0526 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1076-2787 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Complexity |
| locations[0].source.host_organization | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_name | Hindawi Publishing Corporation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319869 |
| locations[0].source.host_organization_lineage_names | Hindawi Publishing Corporation |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://downloads.hindawi.com/journals/complexity/2018/1528341.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Complexity |
| locations[0].landing_page_url | https://doi.org/10.1155/2018/1528341 |
| locations[1].id | pmh:oai:doaj.org/article:e159d6132c6241cc97a55257a45c4fef |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Complexity, Vol 2018 (2018) |
| locations[1].landing_page_url | https://doaj.org/article/e159d6132c6241cc97a55257a45c4fef |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5005231122 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8178-1205 |
| authorships[0].author.display_name | Chengying Mao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59649739 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Software and Communication Engineering, Jiangxi University of Finance and Economics, 330013 Nanchang |
| authorships[0].institutions[0].id | https://openalex.org/I59649739 |
| authorships[0].institutions[0].ror | https://ror.org/03efmyj29 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I59649739 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Jiangxi University of Finance and Economics |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chengying Mao |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Software and Communication Engineering, Jiangxi University of Finance and Economics, 330013 Nanchang |
| authorships[1].author.id | https://openalex.org/A5013456770 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Weisong Xiao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I59649739 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Software and Communication Engineering, Jiangxi University of Finance and Economics, 330013 Nanchang |
| authorships[1].institutions[0].id | https://openalex.org/I59649739 |
| authorships[1].institutions[0].ror | https://ror.org/03efmyj29 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I59649739 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jiangxi University of Finance and Economics |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Weisong Xiao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Software and Communication Engineering, Jiangxi University of Finance and Economics, 330013 Nanchang |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://downloads.hindawi.com/journals/complexity/2018/1528341.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Comprehensive Algorithm for Evaluating Node Influences in Social Networks Based on Preference Analysis and Random Walk |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10064 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Complex Network Analysis Techniques |
| related_works | https://openalex.org/W2892175958, https://openalex.org/W1967293071, https://openalex.org/W2572749905, https://openalex.org/W2896465866, https://openalex.org/W3168190260, https://openalex.org/W1481469028, https://openalex.org/W1964062850, https://openalex.org/W1992392028, https://openalex.org/W2390724719, https://openalex.org/W1611569871 |
| cited_by_count | 24 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 7 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 5 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1155/2018/1528341 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S207319443 |
| best_oa_location.source.issn | 1076-2787, 1099-0526 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1076-2787 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Complexity |
| best_oa_location.source.host_organization | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_name | Hindawi Publishing Corporation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| best_oa_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://downloads.hindawi.com/journals/complexity/2018/1528341.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Complexity |
| best_oa_location.landing_page_url | https://doi.org/10.1155/2018/1528341 |
| primary_location.id | doi:10.1155/2018/1528341 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S207319443 |
| primary_location.source.issn | 1076-2787, 1099-0526 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1076-2787 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Complexity |
| primary_location.source.host_organization | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_name | Hindawi Publishing Corporation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319869 |
| primary_location.source.host_organization_lineage_names | Hindawi Publishing Corporation |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://downloads.hindawi.com/journals/complexity/2018/1528341.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Complexity |
| primary_location.landing_page_url | https://doi.org/10.1155/2018/1528341 |
| publication_date | 2018-01-01 |
| publication_year | 2018 |
| referenced_works | https://openalex.org/W950821216, https://openalex.org/W2776546355, https://openalex.org/W2124637492, https://openalex.org/W1532151061, https://openalex.org/W1977326384, https://openalex.org/W2733313433, https://openalex.org/W2106034715, https://openalex.org/W1992250165, https://openalex.org/W2041660993, https://openalex.org/W2792550408, https://openalex.org/W2793963910, https://openalex.org/W2883211277, https://openalex.org/W2056944867, https://openalex.org/W2171707538, https://openalex.org/W2800766842, https://openalex.org/W2801241906, https://openalex.org/W2860769315, https://openalex.org/W2153465747, https://openalex.org/W1446702602, https://openalex.org/W2592164301, https://openalex.org/W3004635484, https://openalex.org/W2083842271, https://openalex.org/W2468419702, https://openalex.org/W2197906820, https://openalex.org/W2781101438, https://openalex.org/W2134716712, https://openalex.org/W1980749520, https://openalex.org/W2161728228, https://openalex.org/W1994320166, https://openalex.org/W2148606196, https://openalex.org/W2125050594, https://openalex.org/W2767375377, https://openalex.org/W2133131640, https://openalex.org/W2355856605, https://openalex.org/W2484377636, https://openalex.org/W2059556222, https://openalex.org/W2127423798, https://openalex.org/W1972786277, https://openalex.org/W2058623932, https://openalex.org/W78765239, https://openalex.org/W1985451470, https://openalex.org/W1971941321, https://openalex.org/W1992392028, https://openalex.org/W4301347335, https://openalex.org/W4238927122, https://openalex.org/W2736635164, https://openalex.org/W2399879002, https://openalex.org/W2529103813, https://openalex.org/W2594497216, https://openalex.org/W2591813061, https://openalex.org/W2464384554, https://openalex.org/W2525838396, https://openalex.org/W2191478572, https://openalex.org/W2018356076, https://openalex.org/W1606697907, https://openalex.org/W2015370254, https://openalex.org/W2140190241, https://openalex.org/W3099349898 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 28, 51, 84, 159 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.an | 10 |
| abstract_inverted_index.as | 35 |
| abstract_inverted_index.by | 63, 103, 121 |
| abstract_inverted_index.in | 25, 31, 83 |
| abstract_inverted_index.is | 86, 101, 119 |
| abstract_inverted_index.of | 3, 13, 117 |
| abstract_inverted_index.on | 18, 45, 125 |
| abstract_inverted_index.to | 88, 110 |
| abstract_inverted_index.For | 72 |
| abstract_inverted_index.The | 138 |
| abstract_inverted_index.and | 16, 40, 68, 151 |
| abstract_inverted_index.are | 133 |
| abstract_inverted_index.big | 4 |
| abstract_inverted_index.can | 146 |
| abstract_inverted_index.era | 2 |
| abstract_inverted_index.for | 56, 135 |
| abstract_inverted_index.has | 8, 60 |
| abstract_inverted_index.our | 143 |
| abstract_inverted_index.the | 1, 19, 22, 46, 76, 90, 96, 105, 115, 126, 148, 155 |
| abstract_inverted_index.CPG. | 127 |
| abstract_inverted_index.been | 61 |
| abstract_inverted_index.each | 73 |
| abstract_inverted_index.five | 129 |
| abstract_inverted_index.node | 58, 81 |
| abstract_inverted_index.pair | 82 |
| abstract_inverted_index.role | 30 |
| abstract_inverted_index.show | 141 |
| abstract_inverted_index.such | 34 |
| abstract_inverted_index.than | 154 |
| abstract_inverted_index.that | 142 |
| abstract_inverted_index.used | 134 |
| abstract_inverted_index.walk | 70, 124 |
| abstract_inverted_index.with | 108, 158 |
| abstract_inverted_index.(CPG) | 100 |
| abstract_inverted_index.Based | 44 |
| abstract_inverted_index.Then, | 95 |
| abstract_inverted_index.basic | 48, 74, 112 |
| abstract_inverted_index.data, | 5 |
| abstract_inverted_index.every | 80 |
| abstract_inverted_index.graph | 93, 99 |
| abstract_inverted_index.human | 14 |
| abstract_inverted_index.named | 54 |
| abstract_inverted_index.nodes | 118 |
| abstract_inverted_index.plays | 27 |
| abstract_inverted_index.three | 47, 111 |
| abstract_inverted_index.virus | 38 |
| abstract_inverted_index.(PPG). | 94 |
| abstract_inverted_index.areas, | 33 |
| abstract_inverted_index.become | 9 |
| abstract_inverted_index.better | 152 |
| abstract_inverted_index.higher | 149 |
| abstract_inverted_index.public | 41, 130 |
| abstract_inverted_index.random | 69, 123 |
| abstract_inverted_index.single | 160 |
| abstract_inverted_index.social | 6, 131 |
| abstract_inverted_index.achieve | 147 |
| abstract_inverted_index.between | 79 |
| abstract_inverted_index.crucial | 29 |
| abstract_inverted_index.disease | 36 |
| abstract_inverted_index.methods | 157 |
| abstract_inverted_index.network | 7, 85 |
| abstract_inverted_index.opinion | 42 |
| abstract_inverted_index.partial | 91 |
| abstract_inverted_index.ranking | 116 |
| abstract_inverted_index.respect | 109 |
| abstract_inverted_index.results | 140 |
| abstract_inverted_index.various | 32 |
| abstract_inverted_index.Finally, | 114 |
| abstract_inverted_index.analysis | 67 |
| abstract_inverted_index.analyzed | 87 |
| abstract_inverted_index.applying | 64 |
| abstract_inverted_index.existing | 156 |
| abstract_inverted_index.measure, | 75 |
| abstract_inverted_index.measure. | 162 |
| abstract_inverted_index.networks | 26, 132 |
| abstract_inverted_index.proposed | 62 |
| abstract_inverted_index.relation | 66, 78 |
| abstract_inverted_index.Internet. | 20 |
| abstract_inverted_index.algorithm | 53, 145 |
| abstract_inverted_index.analysis. | 137 |
| abstract_inverted_index.combining | 104 |
| abstract_inverted_index.construct | 89 |
| abstract_inverted_index.generated | 102 |
| abstract_inverted_index.important | 11 |
| abstract_inverted_index.measures, | 50 |
| abstract_inverted_index.measures. | 113 |
| abstract_inverted_index.outbreak, | 37 |
| abstract_inverted_index.precision | 150 |
| abstract_inverted_index.relations | 107 |
| abstract_inverted_index.spreaders | 24 |
| abstract_inverted_index.stability | 153 |
| abstract_inverted_index.centrality | 49, 161 |
| abstract_inverted_index.conducting | 122 |
| abstract_inverted_index.determined | 120 |
| abstract_inverted_index.evaluating | 57 |
| abstract_inverted_index.influences | 59 |
| abstract_inverted_index.preference | 65, 77, 92, 98, 106 |
| abstract_inverted_index.reflection | 12 |
| abstract_inverted_index.technique. | 71 |
| abstract_inverted_index.Identifying | 21 |
| abstract_inverted_index.PARW‐Rank | 55, 144 |
| abstract_inverted_index.comparative | 136 |
| abstract_inverted_index.influential | 23 |
| abstract_inverted_index.Furthermore, | 128 |
| abstract_inverted_index.controlling. | 43 |
| abstract_inverted_index.experimental | 139 |
| abstract_inverted_index.interactions | 17 |
| abstract_inverted_index.propagation, | 39 |
| abstract_inverted_index.comprehensive | 52, 97 |
| abstract_inverted_index.communications | 15 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5005231122 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I59649739 |
| citation_normalized_percentile.value | 0.88192985 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |