A Comprehensive Review Study on: Optimized Data Mining, Machine Learning and Deep Learning Techniques for Breast Cancer Prediction in Big Data Context Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.13005/bpj/2339
In recent years, big data in health care is commonly used for the prediction of diseases. The most common cancer is breast cancer infections of metropolitan Indian women as well as in women worldwide with a broadly factor occurrence among nations and regions. According to WHO, among 14% of all cancer tumours in women breast cancer is well-known cancer in women in India also. Few researches have been done on breast cancer prediction on Big data. Big data is now triggering a revolution in healthcare, resulting in better and more optimized outcomes. Rapid technological advancements have increased data generation; EHR (Electronic Health Record) systems produce a massive amount of patient-level data. In the healthcare industry, applications of big data will help to improve outcomes. However, the traditional prediction models have less efficiency in terms of accuracy and error rate. This review article is about the comparative assessment of complex data mining, machine learning, deep learning models used for identifying breast cancer because accuracy rate of any particular algorithm depends on various factors such as implementation framework, datasets(small or large),types of dataset used(attribute based or image based)etc. Aim of this review article is to help to choose the appropriate breast cancer prediction techniques specifically in the Big data environment to produce effective and efficient result, Because “Early detection is the key to prevention-in case of any cancer”.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.13005/bpj/2339
- OA Status
- diamond
- Cited By
- 31
- References
- 48
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226140354
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226140354Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.13005/bpj/2339Digital Object Identifier
- Title
-
A Comprehensive Review Study on: Optimized Data Mining, Machine Learning and Deep Learning Techniques for Breast Cancer Prediction in Big Data ContextWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-31Full publication date if available
- Authors
-
Madhu Kirola, Minakshi Memoria, Ankur Dumka, Amrendra Tripathi, Kapil JoshiList of authors in order
- Landing page
-
https://doi.org/10.13005/bpj/2339Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.13005/bpj/2339Direct OA link when available
- Concepts
-
Big data, Breast cancer, Context (archaeology), Computer science, Machine learning, Artificial intelligence, Deep learning, Health care, Predictive modelling, Cancer, Data mining, Data science, Medicine, Internal medicine, Economic growth, Biology, Economics, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
31Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8, 2024: 8, 2023: 9, 2022: 6Per-year citation counts (last 5 years)
- References (count)
-
48Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226140354 |
|---|---|
| doi | https://doi.org/10.13005/bpj/2339 |
| ids.doi | https://doi.org/10.13005/bpj/2339 |
| ids.openalex | https://openalex.org/W4226140354 |
| fwci | 6.06976343 |
| type | review |
| title | A Comprehensive Review Study on: Optimized Data Mining, Machine Learning and Deep Learning Techniques for Breast Cancer Prediction in Big Data Context |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 25 |
| biblio.first_page | 13 |
| topics[0].id | https://openalex.org/T10862 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | AI in cancer detection |
| topics[1].id | https://openalex.org/T11396 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.9902999997138977 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3605 |
| topics[1].subfield.display_name | Health Information Management |
| topics[1].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C75684735 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7973678112030029 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q858810 |
| concepts[0].display_name | Big data |
| concepts[1].id | https://openalex.org/C530470458 |
| concepts[1].level | 3 |
| concepts[1].score | 0.728033185005188 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q128581 |
| concepts[1].display_name | Breast cancer |
| concepts[2].id | https://openalex.org/C2779343474 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6449563503265381 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[2].display_name | Context (archaeology) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6041788458824158 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5747588872909546 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5644984841346741 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5581806898117065 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C160735492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5456486344337463 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[7].display_name | Health care |
| concepts[8].id | https://openalex.org/C45804977 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5301445722579956 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7239673 |
| concepts[8].display_name | Predictive modelling |
| concepts[9].id | https://openalex.org/C121608353 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4803396463394165 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12078 |
| concepts[9].display_name | Cancer |
| concepts[10].id | https://openalex.org/C124101348 |
| concepts[10].level | 1 |
| concepts[10].score | 0.44433000683784485 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[10].display_name | Data mining |
| concepts[11].id | https://openalex.org/C2522767166 |
| concepts[11].level | 1 |
| concepts[11].score | 0.43014687299728394 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[11].display_name | Data science |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.36641570925712585 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C126322002 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08028650283813477 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[13].display_name | Internal medicine |
| concepts[14].id | https://openalex.org/C50522688 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[14].display_name | Economic growth |
| concepts[15].id | https://openalex.org/C86803240 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[15].display_name | Biology |
| concepts[16].id | https://openalex.org/C162324750 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[16].display_name | Economics |
| concepts[17].id | https://openalex.org/C151730666 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[17].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/big-data |
| keywords[0].score | 0.7973678112030029 |
| keywords[0].display_name | Big data |
| keywords[1].id | https://openalex.org/keywords/breast-cancer |
| keywords[1].score | 0.728033185005188 |
| keywords[1].display_name | Breast cancer |
| keywords[2].id | https://openalex.org/keywords/context |
| keywords[2].score | 0.6449563503265381 |
| keywords[2].display_name | Context (archaeology) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6041788458824158 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.5747588872909546 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5644984841346741 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5581806898117065 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/health-care |
| keywords[7].score | 0.5456486344337463 |
| keywords[7].display_name | Health care |
| keywords[8].id | https://openalex.org/keywords/predictive-modelling |
| keywords[8].score | 0.5301445722579956 |
| keywords[8].display_name | Predictive modelling |
| keywords[9].id | https://openalex.org/keywords/cancer |
| keywords[9].score | 0.4803396463394165 |
| keywords[9].display_name | Cancer |
| keywords[10].id | https://openalex.org/keywords/data-mining |
| keywords[10].score | 0.44433000683784485 |
| keywords[10].display_name | Data mining |
| keywords[11].id | https://openalex.org/keywords/data-science |
| keywords[11].score | 0.43014687299728394 |
| keywords[11].display_name | Data science |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.36641570925712585 |
| keywords[12].display_name | Medicine |
| keywords[13].id | https://openalex.org/keywords/internal-medicine |
| keywords[13].score | 0.08028650283813477 |
| keywords[13].display_name | Internal medicine |
| language | en |
| locations[0].id | doi:10.13005/bpj/2339 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764856905 |
| locations[0].source.issn | 0974-6242, 2456-2610 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0974-6242 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Biomedical & Pharmacology Journal |
| locations[0].source.host_organization | https://openalex.org/P4320800656 |
| locations[0].source.host_organization_name | Oriental Scientific Publishing Company |
| locations[0].source.host_organization_lineage | https://openalex.org/P4320800656 |
| locations[0].source.host_organization_lineage_names | Oriental Scientific Publishing Company |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Biomedical and Pharmacology Journal |
| locations[0].landing_page_url | https://doi.org/10.13005/bpj/2339 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5037222582 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9115-3253 |
| authorships[0].author.display_name | Madhu Kirola |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3132702812 |
| authorships[0].affiliations[0].raw_affiliation_string | 1Uttaranchal University, Dehradun, India |
| authorships[0].institutions[0].id | https://openalex.org/I3132702812 |
| authorships[0].institutions[0].ror | https://ror.org/00ba6pg24 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3132702812 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Uttaranchal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Madhu Kirola |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 1Uttaranchal University, Dehradun, India |
| authorships[1].author.id | https://openalex.org/A5055965654 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7586-6309 |
| authorships[1].author.display_name | Minakshi Memoria |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3132702812 |
| authorships[1].affiliations[0].raw_affiliation_string | 1Uttaranchal University, Dehradun, India |
| authorships[1].institutions[0].id | https://openalex.org/I3132702812 |
| authorships[1].institutions[0].ror | https://ror.org/00ba6pg24 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3132702812 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Uttaranchal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Minakshi Memoria |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 1Uttaranchal University, Dehradun, India |
| authorships[2].author.id | https://openalex.org/A5026456703 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8837-7723 |
| authorships[2].author.display_name | Ankur Dumka |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I933318745 |
| authorships[2].affiliations[0].raw_affiliation_string | 2Women’s Institute of Technology, Dehradun, India |
| authorships[2].institutions[0].id | https://openalex.org/I933318745 |
| authorships[2].institutions[0].ror | https://ror.org/01v5k4d73 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I933318745 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Dehradun Institute of Technology University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ankur Dumka |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 2Women’s Institute of Technology, Dehradun, India |
| authorships[3].author.id | https://openalex.org/A5057757150 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2350-4012 |
| authorships[3].author.display_name | Amrendra Tripathi |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[3].affiliations[0].raw_affiliation_string | 3UPES, Dehradun, India |
| authorships[3].institutions[0].id | https://openalex.org/I5847235 |
| authorships[3].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Amrendra Tripathi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | 3UPES, Dehradun, India |
| authorships[4].author.id | https://openalex.org/A5011020166 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1097-8347 |
| authorships[4].author.display_name | Kapil Joshi |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I3132702812 |
| authorships[4].affiliations[0].raw_affiliation_string | 1Uttaranchal University, Dehradun, India |
| authorships[4].institutions[0].id | https://openalex.org/I3132702812 |
| authorships[4].institutions[0].ror | https://ror.org/00ba6pg24 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I3132702812 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Uttaranchal University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Kapil Joshi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | 1Uttaranchal University, Dehradun, India |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.13005/bpj/2339 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Comprehensive Review Study on: Optimized Data Mining, Machine Learning and Deep Learning Techniques for Breast Cancer Prediction in Big Data Context |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10862 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | AI in cancer detection |
| related_works | https://openalex.org/W4380075502, https://openalex.org/W4223943233, https://openalex.org/W4312200629, https://openalex.org/W4360585206, https://openalex.org/W4364306694, https://openalex.org/W3014300295, https://openalex.org/W4380086463, https://openalex.org/W4225161397, https://openalex.org/W4320068940, https://openalex.org/W3164822677 |
| cited_by_count | 31 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 8 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| locations_count | 1 |
| best_oa_location.id | doi:10.13005/bpj/2339 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764856905 |
| best_oa_location.source.issn | 0974-6242, 2456-2610 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0974-6242 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Biomedical & Pharmacology Journal |
| best_oa_location.source.host_organization | https://openalex.org/P4320800656 |
| best_oa_location.source.host_organization_name | Oriental Scientific Publishing Company |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4320800656 |
| best_oa_location.source.host_organization_lineage_names | Oriental Scientific Publishing Company |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Biomedical and Pharmacology Journal |
| best_oa_location.landing_page_url | https://doi.org/10.13005/bpj/2339 |
| primary_location.id | doi:10.13005/bpj/2339 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764856905 |
| primary_location.source.issn | 0974-6242, 2456-2610 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0974-6242 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Biomedical & Pharmacology Journal |
| primary_location.source.host_organization | https://openalex.org/P4320800656 |
| primary_location.source.host_organization_name | Oriental Scientific Publishing Company |
| primary_location.source.host_organization_lineage | https://openalex.org/P4320800656 |
| primary_location.source.host_organization_lineage_names | Oriental Scientific Publishing Company |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Biomedical and Pharmacology Journal |
| primary_location.landing_page_url | https://doi.org/10.13005/bpj/2339 |
| publication_date | 2022-03-31 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3083171672, https://openalex.org/W2806359329, https://openalex.org/W2370924594, https://openalex.org/W2953605441, https://openalex.org/W2989134510, https://openalex.org/W2988718426, https://openalex.org/W4240433105, https://openalex.org/W2982822400, https://openalex.org/W2791030877, https://openalex.org/W2951404122, https://openalex.org/W2806419994, https://openalex.org/W2981089454, https://openalex.org/W2936214295, https://openalex.org/W4243162126, https://openalex.org/W2968058863, https://openalex.org/W3108808737, https://openalex.org/W2908849530, https://openalex.org/W2942203109, https://openalex.org/W2972736028, https://openalex.org/W2042025453, https://openalex.org/W3021329907, https://openalex.org/W2992252600, https://openalex.org/W3217619566, https://openalex.org/W2940689983, https://openalex.org/W2604686853, https://openalex.org/W2945819472, https://openalex.org/W2944939776, https://openalex.org/W2906221808, https://openalex.org/W2914383167, https://openalex.org/W3104768730, https://openalex.org/W2746217632, https://openalex.org/W3013538309, https://openalex.org/W2889646458, https://openalex.org/W2982663567, https://openalex.org/W2964562366, https://openalex.org/W2989272346, https://openalex.org/W2907031566, https://openalex.org/W2952523812, https://openalex.org/W2952493603, https://openalex.org/W2899432087, https://openalex.org/W2973569693, https://openalex.org/W2965231525, https://openalex.org/W2914899668, https://openalex.org/W2907066882, https://openalex.org/W3113014766, https://openalex.org/W2979414334, https://openalex.org/W2621586148, https://openalex.org/W2993303538 |
| referenced_works_count | 48 |
| abstract_inverted_index.a | 35, 81, 105 |
| abstract_inverted_index.In | 0, 111 |
| abstract_inverted_index.as | 28, 30, 173 |
| abstract_inverted_index.in | 5, 31, 52, 59, 61, 83, 86, 132, 203 |
| abstract_inverted_index.is | 8, 20, 56, 78, 142, 191, 217 |
| abstract_inverted_index.of | 14, 24, 48, 108, 116, 134, 147, 164, 179, 187, 223 |
| abstract_inverted_index.on | 69, 73, 169 |
| abstract_inverted_index.or | 177, 183 |
| abstract_inverted_index.to | 44, 121, 192, 194, 208, 220 |
| abstract_inverted_index.14% | 47 |
| abstract_inverted_index.Aim | 186 |
| abstract_inverted_index.Big | 74, 76, 205 |
| abstract_inverted_index.EHR | 99 |
| abstract_inverted_index.Few | 64 |
| abstract_inverted_index.The | 16 |
| abstract_inverted_index.all | 49 |
| abstract_inverted_index.and | 41, 88, 136, 211 |
| abstract_inverted_index.any | 165, 224 |
| abstract_inverted_index.big | 3, 117 |
| abstract_inverted_index.for | 11, 157 |
| abstract_inverted_index.key | 219 |
| abstract_inverted_index.now | 79 |
| abstract_inverted_index.the | 12, 112, 125, 144, 196, 204, 218 |
| abstract_inverted_index.This | 139 |
| abstract_inverted_index.WHO, | 45 |
| abstract_inverted_index.been | 67 |
| abstract_inverted_index.care | 7 |
| abstract_inverted_index.case | 222 |
| abstract_inverted_index.data | 4, 77, 97, 118, 149, 206 |
| abstract_inverted_index.deep | 153 |
| abstract_inverted_index.done | 68 |
| abstract_inverted_index.have | 66, 95, 129 |
| abstract_inverted_index.help | 120, 193 |
| abstract_inverted_index.less | 130 |
| abstract_inverted_index.more | 89 |
| abstract_inverted_index.most | 17 |
| abstract_inverted_index.rate | 163 |
| abstract_inverted_index.such | 172 |
| abstract_inverted_index.this | 188 |
| abstract_inverted_index.used | 10, 156 |
| abstract_inverted_index.well | 29 |
| abstract_inverted_index.will | 119 |
| abstract_inverted_index.with | 34 |
| abstract_inverted_index.India | 62 |
| abstract_inverted_index.Rapid | 92 |
| abstract_inverted_index.about | 143 |
| abstract_inverted_index.also. | 63 |
| abstract_inverted_index.among | 39, 46 |
| abstract_inverted_index.based | 182 |
| abstract_inverted_index.data. | 75, 110 |
| abstract_inverted_index.error | 137 |
| abstract_inverted_index.image | 184 |
| abstract_inverted_index.rate. | 138 |
| abstract_inverted_index.terms | 133 |
| abstract_inverted_index.women | 27, 32, 53, 60 |
| abstract_inverted_index.Health | 101 |
| abstract_inverted_index.Indian | 26 |
| abstract_inverted_index.amount | 107 |
| abstract_inverted_index.better | 87 |
| abstract_inverted_index.breast | 21, 54, 70, 159, 198 |
| abstract_inverted_index.cancer | 19, 22, 50, 55, 58, 71, 160, 199 |
| abstract_inverted_index.choose | 195 |
| abstract_inverted_index.common | 18 |
| abstract_inverted_index.factor | 37 |
| abstract_inverted_index.health | 6 |
| abstract_inverted_index.models | 128, 155 |
| abstract_inverted_index.recent | 1 |
| abstract_inverted_index.review | 140, 189 |
| abstract_inverted_index.years, | 2 |
| abstract_inverted_index.Because | 214 |
| abstract_inverted_index.Record) | 102 |
| abstract_inverted_index.article | 141, 190 |
| abstract_inverted_index.because | 161 |
| abstract_inverted_index.broadly | 36 |
| abstract_inverted_index.complex | 148 |
| abstract_inverted_index.dataset | 180 |
| abstract_inverted_index.depends | 168 |
| abstract_inverted_index.factors | 171 |
| abstract_inverted_index.improve | 122 |
| abstract_inverted_index.machine | 151 |
| abstract_inverted_index.massive | 106 |
| abstract_inverted_index.mining, | 150 |
| abstract_inverted_index.nations | 40 |
| abstract_inverted_index.produce | 104, 209 |
| abstract_inverted_index.result, | 213 |
| abstract_inverted_index.systems | 103 |
| abstract_inverted_index.tumours | 51 |
| abstract_inverted_index.various | 170 |
| abstract_inverted_index.However, | 124 |
| abstract_inverted_index.accuracy | 135, 162 |
| abstract_inverted_index.commonly | 9 |
| abstract_inverted_index.learning | 154 |
| abstract_inverted_index.regions. | 42 |
| abstract_inverted_index.“Early | 215 |
| abstract_inverted_index.According | 43 |
| abstract_inverted_index.algorithm | 167 |
| abstract_inverted_index.detection | 216 |
| abstract_inverted_index.diseases. | 15 |
| abstract_inverted_index.effective | 210 |
| abstract_inverted_index.efficient | 212 |
| abstract_inverted_index.increased | 96 |
| abstract_inverted_index.industry, | 114 |
| abstract_inverted_index.learning, | 152 |
| abstract_inverted_index.optimized | 90 |
| abstract_inverted_index.outcomes. | 91, 123 |
| abstract_inverted_index.resulting | 85 |
| abstract_inverted_index.worldwide | 33 |
| abstract_inverted_index.assessment | 146 |
| abstract_inverted_index.based)etc. | 185 |
| abstract_inverted_index.cancer”. | 225 |
| abstract_inverted_index.efficiency | 131 |
| abstract_inverted_index.framework, | 175 |
| abstract_inverted_index.healthcare | 113 |
| abstract_inverted_index.infections | 23 |
| abstract_inverted_index.occurrence | 38 |
| abstract_inverted_index.particular | 166 |
| abstract_inverted_index.prediction | 13, 72, 127, 200 |
| abstract_inverted_index.researches | 65 |
| abstract_inverted_index.revolution | 82 |
| abstract_inverted_index.techniques | 201 |
| abstract_inverted_index.triggering | 80 |
| abstract_inverted_index.well-known | 57 |
| abstract_inverted_index.(Electronic | 100 |
| abstract_inverted_index.appropriate | 197 |
| abstract_inverted_index.comparative | 145 |
| abstract_inverted_index.environment | 207 |
| abstract_inverted_index.generation; | 98 |
| abstract_inverted_index.healthcare, | 84 |
| abstract_inverted_index.identifying | 158 |
| abstract_inverted_index.traditional | 126 |
| abstract_inverted_index.advancements | 94 |
| abstract_inverted_index.applications | 115 |
| abstract_inverted_index.large),types | 178 |
| abstract_inverted_index.metropolitan | 25 |
| abstract_inverted_index.specifically | 202 |
| abstract_inverted_index.patient-level | 109 |
| abstract_inverted_index.prevention-in | 221 |
| abstract_inverted_index.technological | 93 |
| abstract_inverted_index.datasets(small | 176 |
| abstract_inverted_index.implementation | 174 |
| abstract_inverted_index.used(attribute | 181 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.95157818 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |