A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3689036
Clustering is a fundamental machine learning task, which aim at assigning instances into groups so that similar samples belong to the same cluster while dissimilar samples belong to different clusters. Shallow clustering methods usually assume that data are collected and expressed as feature vectors within which clustering is performed. However, clustering high-dimensional data, such as images, texts, videos, and graphs, poses significant challenges for clustering tasks, such as indiscriminate representation and intricate relationships among instances. Over the past decades, deep learning has achieved remarkable success in effective representation learning and modeling complex relationships. Motivated by these advancements, Deep Clustering seeks to improve clustering outcomes through deep learning techniques, garnering considerable interest from both academia and industry. Despite many contributions to this vibrant area of research, the lack of systematic analysis and a comprehensive taxonomy has hindered progress in this field. In this survey, we first explore how deep learning can be integrated into deep clustering and identify two fundamental components: the representation learning module and the clustering module. Then, we summarize and analyze the representative design of these two modules. Furthermore, we introduce a novel taxonomy of deep clustering based on how these two modules interact, specifically through multistage, generative, iterative, and simultaneous approaches. In addition, we present well-known benchmark datasets, evaluation metrics, and open-source tools to clearly demonstrate different experimental approaches. Finally, we examine the practical applications of deep clustering and propose challenging areas for future research.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.1145/3689036
- https://dl.acm.org/doi/pdf/10.1145/3689036
- OA Status
- bronze
- Cited By
- 49
- References
- 204
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403465936
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403465936Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3689036Digital Object Identifier
- Title
-
A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future DirectionsWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-16Full publication date if available
- Authors
-
Sheng Zhou, Hongjia Xu, Zhuonan Zheng, Jiawei Chen, Zhao Li, Jiajun Bu, Jia Wu, Xin Wang, Wenwu Zhu, Martin EsterList of authors in order
- Landing page
-
https://doi.org/10.1145/3689036Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3689036Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3689036Direct OA link when available
- Concepts
-
Computer science, Taxonomy (biology), Cluster analysis, Data science, Artificial intelligence, Information retrieval, Data mining, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
49Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 42, 2024: 7Per-year citation counts (last 5 years)
- References (count)
-
204Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403465936 |
|---|---|
| doi | https://doi.org/10.1145/3689036 |
| ids.doi | https://doi.org/10.1145/3689036 |
| ids.openalex | https://openalex.org/W4403465936 |
| fwci | 31.30014891 |
| type | review |
| title | A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions |
| awards[0].id | https://openalex.org/G5550716360 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62106221, 62372408 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G3776827806 |
| awards[1].funder_id | https://openalex.org/F4320332587 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2022J183 |
| awards[1].funder_display_name | Natural Science Foundation of Ningbo |
| biblio.issue | 3 |
| biblio.volume | 57 |
| biblio.last_page | 38 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10637 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Clustering Algorithms Research |
| topics[2].id | https://openalex.org/T12761 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9977999925613403 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Data Stream Mining Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320332587 |
| funders[1].ror | https://ror.org/01h0zpd94 |
| funders[1].display_name | Natural Science Foundation of Ningbo |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8597976565361023 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C58642233 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7009046077728271 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8269924 |
| concepts[1].display_name | Taxonomy (biology) |
| concepts[2].id | https://openalex.org/C73555534 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6057400703430176 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[2].display_name | Cluster analysis |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5752913951873779 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.36817628145217896 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C23123220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3383360505104065 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[5].display_name | Information retrieval |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3362885117530823 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C59822182 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[8].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8597976565361023 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/taxonomy |
| keywords[1].score | 0.7009046077728271 |
| keywords[1].display_name | Taxonomy (biology) |
| keywords[2].id | https://openalex.org/keywords/cluster-analysis |
| keywords[2].score | 0.6057400703430176 |
| keywords[2].display_name | Cluster analysis |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.5752913951873779 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.36817628145217896 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/information-retrieval |
| keywords[5].score | 0.3383360505104065 |
| keywords[5].display_name | Information retrieval |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.3362885117530823 |
| keywords[6].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1145/3689036 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S157921468 |
| locations[0].source.issn | 0360-0300, 1557-7341 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0360-0300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | ACM Computing Surveys |
| locations[0].source.host_organization | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_name | Association for Computing Machinery |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319798 |
| locations[0].source.host_organization_lineage_names | Association for Computing Machinery |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3689036 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | ACM Computing Surveys |
| locations[0].landing_page_url | https://doi.org/10.1145/3689036 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102754272 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3645-1041 |
| authorships[0].author.display_name | Sheng Zhou |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[0].affiliations[0].raw_affiliation_string | Zhejiang University, Hangzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I76130692 |
| authorships[0].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Zhejiang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sheng Zhou |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Zhejiang University, Hangzhou, China |
| authorships[1].author.id | https://openalex.org/A5100911063 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-0138-3250 |
| authorships[1].author.display_name | Hongjia Xu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[1].affiliations[0].raw_affiliation_string | Zhejiang University, Hangzhou China |
| authorships[1].institutions[0].id | https://openalex.org/I76130692 |
| authorships[1].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Zhejiang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hongjia Xu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Zhejiang University, Hangzhou China |
| authorships[2].author.id | https://openalex.org/A5075532721 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-7326-7945 |
| authorships[2].author.display_name | Zhuonan Zheng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[2].affiliations[0].raw_affiliation_string | Zhejiang University, Hangzhou China |
| authorships[2].institutions[0].id | https://openalex.org/I76130692 |
| authorships[2].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Zhejiang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhuonan Zheng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Zhejiang University, Hangzhou China |
| authorships[3].author.id | https://openalex.org/A5100362815 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4752-2629 |
| authorships[3].author.display_name | Jiawei Chen |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[3].affiliations[0].raw_affiliation_string | Zhejiang University, Hangzhou China |
| authorships[3].institutions[0].id | https://openalex.org/I76130692 |
| authorships[3].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Zhejiang University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiawei Chen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Zhejiang University, Hangzhou China |
| authorships[4].author.id | https://openalex.org/A5032277491 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5056-0351 |
| authorships[4].author.display_name | Zhao Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[4].affiliations[0].raw_affiliation_string | Zhejiang University, Hangzhou China |
| authorships[4].institutions[0].id | https://openalex.org/I76130692 |
| authorships[4].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Zhejiang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Zhao Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Zhejiang University, Hangzhou China |
| authorships[5].author.id | https://openalex.org/A5052757755 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1097-2044 |
| authorships[5].author.display_name | Jiajun Bu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I76130692 |
| authorships[5].affiliations[0].raw_affiliation_string | Zhejiang University, Hangzhou China |
| authorships[5].institutions[0].id | https://openalex.org/I76130692 |
| authorships[5].institutions[0].ror | https://ror.org/00a2xv884 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I76130692 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Zhejiang University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jiajun Bu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Zhejiang University, Hangzhou China |
| authorships[6].author.id | https://openalex.org/A5007475662 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-1371-5801 |
| authorships[6].author.display_name | Jia Wu |
| authorships[6].countries | AU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I99043593 |
| authorships[6].affiliations[0].raw_affiliation_string | Macquarie University, Sydney, Australia |
| authorships[6].institutions[0].id | https://openalex.org/I99043593 |
| authorships[6].institutions[0].ror | https://ror.org/01sf06y89 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I99043593 |
| authorships[6].institutions[0].country_code | AU |
| authorships[6].institutions[0].display_name | Macquarie University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jia Wu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Macquarie University, Sydney, Australia |
| authorships[7].author.id | https://openalex.org/A5022927606 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0351-2939 |
| authorships[7].author.display_name | Xin Wang |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[7].affiliations[0].raw_affiliation_string | Tsinghua University, Beijing, China |
| authorships[7].institutions[0].id | https://openalex.org/I99065089 |
| authorships[7].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Tsinghua University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Xin Wang |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Tsinghua University, Beijing, China |
| authorships[8].author.id | https://openalex.org/A5100339293 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2236-9290 |
| authorships[8].author.display_name | Wenwu Zhu |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I99065089 |
| authorships[8].affiliations[0].raw_affiliation_string | Tsinghua University, Beijing, China |
| authorships[8].institutions[0].id | https://openalex.org/I99065089 |
| authorships[8].institutions[0].ror | https://ror.org/03cve4549 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I99065089 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Tsinghua University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Wenwu Zhu |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Tsinghua University, Beijing, China |
| authorships[9].author.id | https://openalex.org/A5018267399 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-7732-2815 |
| authorships[9].author.display_name | Martin Ester |
| authorships[9].countries | CA |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I18014758 |
| authorships[9].affiliations[0].raw_affiliation_string | Simon Fraser University, Burnaby, Canada |
| authorships[9].institutions[0].id | https://openalex.org/I18014758 |
| authorships[9].institutions[0].ror | https://ror.org/0213rcc28 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I18014758 |
| authorships[9].institutions[0].country_code | CA |
| authorships[9].institutions[0].display_name | Simon Fraser University |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Martin Ester |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Simon Fraser University, Burnaby, Canada |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3689036 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Comprehensive Survey on Deep Clustering: Taxonomy, Challenges, and Future Directions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W4298130764, https://openalex.org/W2804364458, https://openalex.org/W2132641928, https://openalex.org/W4310225030, https://openalex.org/W2090259340, https://openalex.org/W1926736923, https://openalex.org/W2158836806, https://openalex.org/W2393816671, https://openalex.org/W2083665254, https://openalex.org/W2942177010 |
| cited_by_count | 49 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 42 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1145/3689036 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S157921468 |
| best_oa_location.source.issn | 0360-0300, 1557-7341 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0360-0300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | ACM Computing Surveys |
| best_oa_location.source.host_organization | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_name | Association for Computing Machinery |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| best_oa_location.source.host_organization_lineage_names | Association for Computing Machinery |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3689036 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | ACM Computing Surveys |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3689036 |
| primary_location.id | doi:10.1145/3689036 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S157921468 |
| primary_location.source.issn | 0360-0300, 1557-7341 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0360-0300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | ACM Computing Surveys |
| primary_location.source.host_organization | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_name | Association for Computing Machinery |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319798 |
| primary_location.source.host_organization_lineage_names | Association for Computing Machinery |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3689036 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | ACM Computing Surveys |
| primary_location.landing_page_url | https://doi.org/10.1145/3689036 |
| publication_date | 2024-10-16 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2754384272, https://openalex.org/W3154414170, https://openalex.org/W3035519852, https://openalex.org/W3129482316, https://openalex.org/W3164338400, https://openalex.org/W2962852342, https://openalex.org/W3042602466, https://openalex.org/W4237591687, https://openalex.org/W170028715, https://openalex.org/W1128809682, https://openalex.org/W1992419399, https://openalex.org/W1501500081, https://openalex.org/W2884851420, https://openalex.org/W2898546657, https://openalex.org/W2153233077, https://openalex.org/W4366961264, https://openalex.org/W4400315096, https://openalex.org/W2163922914, https://openalex.org/W3207377746, https://openalex.org/W2980966214, https://openalex.org/W2766736793, https://openalex.org/W2909431601, https://openalex.org/W2808409763, https://openalex.org/W3096831136, https://openalex.org/W2149350210, https://openalex.org/W2092939357, https://openalex.org/W2419501139, https://openalex.org/W6803947598, https://openalex.org/W3035524453, https://openalex.org/W6776700526, https://openalex.org/W2150593711, https://openalex.org/W2979685515, https://openalex.org/W3183607039, https://openalex.org/W2798534672, https://openalex.org/W2112796928, https://openalex.org/W2194775991, https://openalex.org/W2952914835, https://openalex.org/W2993450281, https://openalex.org/W2972943112, https://openalex.org/W3201691278, https://openalex.org/W4389519604, https://openalex.org/W3145385912, https://openalex.org/W3132087808, https://openalex.org/W3170837227, https://openalex.org/W2807737462, https://openalex.org/W4313413337, https://openalex.org/W3011667710, https://openalex.org/W2393319904, https://openalex.org/W3012588100, https://openalex.org/W2982648939, https://openalex.org/W2997242078, https://openalex.org/W2099438806, https://openalex.org/W3173856251, https://openalex.org/W2808466528, https://openalex.org/W1971039378, https://openalex.org/W2601530027, https://openalex.org/W3110446398, https://openalex.org/W3169314462, https://openalex.org/W3137513727, https://openalex.org/W2883725317, https://openalex.org/W2779692282, https://openalex.org/W3106709020, https://openalex.org/W2741943936, https://openalex.org/W2608862709, https://openalex.org/W2603986758, https://openalex.org/W3023371261, https://openalex.org/W3114632476, https://openalex.org/W2405933695, https://openalex.org/W2120303002, https://openalex.org/W2005556282, https://openalex.org/W2946787236, https://openalex.org/W2730106296, https://openalex.org/W2986063762, https://openalex.org/W2963761396, https://openalex.org/W2808516958, https://openalex.org/W2948398419, https://openalex.org/W2912917402, https://openalex.org/W3204364556, https://openalex.org/W4400769112, https://openalex.org/W82771173, https://openalex.org/W3143649444, https://openalex.org/W3004946360, https://openalex.org/W2937917790, https://openalex.org/W2964118618, https://openalex.org/W3034363127, https://openalex.org/W2994560339, https://openalex.org/W2990500698, https://openalex.org/W3087124270, https://openalex.org/W3171153522, https://openalex.org/W4387675711, https://openalex.org/W4214510096, https://openalex.org/W2064027560, https://openalex.org/W3080692611, https://openalex.org/W3127274523, https://openalex.org/W2070232376, https://openalex.org/W2135957668, https://openalex.org/W2066215526, https://openalex.org/W2945827377, https://openalex.org/W3170974905, https://openalex.org/W2266294848, https://openalex.org/W3022955783, https://openalex.org/W3092920241, https://openalex.org/W3199620264, https://openalex.org/W2059736685, https://openalex.org/W4388426002, https://openalex.org/W4391365647, https://openalex.org/W3125950809, https://openalex.org/W4289205646, https://openalex.org/W4390724540, https://openalex.org/W4299345493, https://openalex.org/W3091676835, https://openalex.org/W3091642260, https://openalex.org/W3155189654, https://openalex.org/W4200352059, https://openalex.org/W3203245760, https://openalex.org/W4383109076, https://openalex.org/W3100103333, https://openalex.org/W3166288931, https://openalex.org/W2767106145, https://openalex.org/W3158152362, https://openalex.org/W3136421420, https://openalex.org/W2106398669, https://openalex.org/W4214573674, https://openalex.org/W4307092192, https://openalex.org/W2750867444, https://openalex.org/W3092295864, https://openalex.org/W3153730550, https://openalex.org/W4386590644, https://openalex.org/W4391957802, https://openalex.org/W4390885769, https://openalex.org/W4372349553, https://openalex.org/W4387503172, https://openalex.org/W4372329392, https://openalex.org/W2963806858, https://openalex.org/W2056562706, https://openalex.org/W2222512263, https://openalex.org/W2127048411, https://openalex.org/W3194841521, https://openalex.org/W1971421925, https://openalex.org/W2131681506, https://openalex.org/W2102931907, https://openalex.org/W2121947440, https://openalex.org/W2132914434, https://openalex.org/W2605181250, https://openalex.org/W3030885106, https://openalex.org/W3000619422, https://openalex.org/W2740924709, https://openalex.org/W2067191022, https://openalex.org/W2096179302, https://openalex.org/W1983037304, https://openalex.org/W4206375275, https://openalex.org/W3034671389, https://openalex.org/W3206604724, https://openalex.org/W2990722563, https://openalex.org/W1978627835, https://openalex.org/W2137050582, https://openalex.org/W2886970679, https://openalex.org/W2140492705, https://openalex.org/W4312834202, https://openalex.org/W2951381561, https://openalex.org/W3092982430, https://openalex.org/W2167804846, https://openalex.org/W3094777143, https://openalex.org/W2997692676, https://openalex.org/W3093352713, https://openalex.org/W2990509288, https://openalex.org/W2901546958, https://openalex.org/W2810665353, https://openalex.org/W2956118129, https://openalex.org/W2054097025, https://openalex.org/W3011574394, https://openalex.org/W2059515884, https://openalex.org/W4292081303, https://openalex.org/W3014249243, https://openalex.org/W3205749498, https://openalex.org/W2114315281, https://openalex.org/W1963523624, https://openalex.org/W3191948670, https://openalex.org/W2165698076, https://openalex.org/W2550291221, https://openalex.org/W2991405316, https://openalex.org/W4214535608, https://openalex.org/W3035070480, https://openalex.org/W3107946752, https://openalex.org/W3183873439, https://openalex.org/W2551429935, https://openalex.org/W3110556690, https://openalex.org/W3014524176, https://openalex.org/W2187089797, https://openalex.org/W3099768174, https://openalex.org/W3204782953, https://openalex.org/W4245955574, https://openalex.org/W3088409176, https://openalex.org/W3101553402, https://openalex.org/W3102641634, https://openalex.org/W3101709902, https://openalex.org/W4287812705, https://openalex.org/W3165527726, https://openalex.org/W3208414711, https://openalex.org/W3105538385, https://openalex.org/W4232279919, https://openalex.org/W3211566171, https://openalex.org/W2741951152, https://openalex.org/W3213068453 |
| referenced_works_count | 204 |
| abstract_inverted_index.a | 2, 131, 183 |
| abstract_inverted_index.In | 140, 204 |
| abstract_inverted_index.as | 41, 54, 67 |
| abstract_inverted_index.at | 9 |
| abstract_inverted_index.be | 150 |
| abstract_inverted_index.by | 94 |
| abstract_inverted_index.in | 85, 137 |
| abstract_inverted_index.is | 1, 47 |
| abstract_inverted_index.of | 123, 127, 176, 186, 228 |
| abstract_inverted_index.on | 190 |
| abstract_inverted_index.so | 14 |
| abstract_inverted_index.to | 19, 27, 100, 119, 216 |
| abstract_inverted_index.we | 143, 169, 181, 206, 223 |
| abstract_inverted_index.aim | 8 |
| abstract_inverted_index.and | 39, 58, 70, 89, 114, 130, 155, 164, 171, 201, 213, 231 |
| abstract_inverted_index.are | 37 |
| abstract_inverted_index.can | 149 |
| abstract_inverted_index.for | 63, 235 |
| abstract_inverted_index.has | 81, 134 |
| abstract_inverted_index.how | 146, 191 |
| abstract_inverted_index.the | 20, 76, 125, 160, 165, 173, 225 |
| abstract_inverted_index.two | 157, 178, 193 |
| abstract_inverted_index.Deep | 97 |
| abstract_inverted_index.Over | 75 |
| abstract_inverted_index.area | 122 |
| abstract_inverted_index.both | 112 |
| abstract_inverted_index.data | 36 |
| abstract_inverted_index.deep | 79, 105, 147, 153, 187, 229 |
| abstract_inverted_index.from | 111 |
| abstract_inverted_index.into | 12, 152 |
| abstract_inverted_index.lack | 126 |
| abstract_inverted_index.many | 117 |
| abstract_inverted_index.past | 77 |
| abstract_inverted_index.same | 21 |
| abstract_inverted_index.such | 53, 66 |
| abstract_inverted_index.that | 15, 35 |
| abstract_inverted_index.this | 120, 138, 141 |
| abstract_inverted_index.Then, | 168 |
| abstract_inverted_index.among | 73 |
| abstract_inverted_index.areas | 234 |
| abstract_inverted_index.based | 189 |
| abstract_inverted_index.data, | 52 |
| abstract_inverted_index.first | 144 |
| abstract_inverted_index.novel | 184 |
| abstract_inverted_index.poses | 60 |
| abstract_inverted_index.seeks | 99 |
| abstract_inverted_index.task, | 6 |
| abstract_inverted_index.these | 95, 177, 192 |
| abstract_inverted_index.tools | 215 |
| abstract_inverted_index.which | 7, 45 |
| abstract_inverted_index.while | 23 |
| abstract_inverted_index.assume | 34 |
| abstract_inverted_index.belong | 18, 26 |
| abstract_inverted_index.design | 175 |
| abstract_inverted_index.field. | 139 |
| abstract_inverted_index.future | 236 |
| abstract_inverted_index.groups | 13 |
| abstract_inverted_index.module | 163 |
| abstract_inverted_index.tasks, | 65 |
| abstract_inverted_index.texts, | 56 |
| abstract_inverted_index.within | 44 |
| abstract_inverted_index.Despite | 116 |
| abstract_inverted_index.Shallow | 30 |
| abstract_inverted_index.analyze | 172 |
| abstract_inverted_index.clearly | 217 |
| abstract_inverted_index.cluster | 22 |
| abstract_inverted_index.complex | 91 |
| abstract_inverted_index.examine | 224 |
| abstract_inverted_index.explore | 145 |
| abstract_inverted_index.feature | 42 |
| abstract_inverted_index.graphs, | 59 |
| abstract_inverted_index.images, | 55 |
| abstract_inverted_index.improve | 101 |
| abstract_inverted_index.machine | 4 |
| abstract_inverted_index.methods | 32 |
| abstract_inverted_index.module. | 167 |
| abstract_inverted_index.modules | 194 |
| abstract_inverted_index.present | 207 |
| abstract_inverted_index.propose | 232 |
| abstract_inverted_index.samples | 17, 25 |
| abstract_inverted_index.similar | 16 |
| abstract_inverted_index.success | 84 |
| abstract_inverted_index.survey, | 142 |
| abstract_inverted_index.through | 104, 197 |
| abstract_inverted_index.usually | 33 |
| abstract_inverted_index.vectors | 43 |
| abstract_inverted_index.vibrant | 121 |
| abstract_inverted_index.videos, | 57 |
| abstract_inverted_index.Finally, | 222 |
| abstract_inverted_index.However, | 49 |
| abstract_inverted_index.academia | 113 |
| abstract_inverted_index.achieved | 82 |
| abstract_inverted_index.analysis | 129 |
| abstract_inverted_index.decades, | 78 |
| abstract_inverted_index.hindered | 135 |
| abstract_inverted_index.identify | 156 |
| abstract_inverted_index.interest | 110 |
| abstract_inverted_index.learning | 5, 80, 88, 106, 148, 162 |
| abstract_inverted_index.metrics, | 212 |
| abstract_inverted_index.modeling | 90 |
| abstract_inverted_index.modules. | 179 |
| abstract_inverted_index.outcomes | 103 |
| abstract_inverted_index.progress | 136 |
| abstract_inverted_index.taxonomy | 133, 185 |
| abstract_inverted_index.Motivated | 93 |
| abstract_inverted_index.addition, | 205 |
| abstract_inverted_index.assigning | 10 |
| abstract_inverted_index.benchmark | 209 |
| abstract_inverted_index.clusters. | 29 |
| abstract_inverted_index.collected | 38 |
| abstract_inverted_index.datasets, | 210 |
| abstract_inverted_index.different | 28, 219 |
| abstract_inverted_index.effective | 86 |
| abstract_inverted_index.expressed | 40 |
| abstract_inverted_index.garnering | 108 |
| abstract_inverted_index.industry. | 115 |
| abstract_inverted_index.instances | 11 |
| abstract_inverted_index.interact, | 195 |
| abstract_inverted_index.intricate | 71 |
| abstract_inverted_index.introduce | 182 |
| abstract_inverted_index.practical | 226 |
| abstract_inverted_index.research, | 124 |
| abstract_inverted_index.research. | 237 |
| abstract_inverted_index.summarize | 170 |
| abstract_inverted_index.Clustering | 0, 98 |
| abstract_inverted_index.challenges | 62 |
| abstract_inverted_index.clustering | 31, 46, 50, 64, 102, 154, 166, 188, 230 |
| abstract_inverted_index.dissimilar | 24 |
| abstract_inverted_index.evaluation | 211 |
| abstract_inverted_index.instances. | 74 |
| abstract_inverted_index.integrated | 151 |
| abstract_inverted_index.iterative, | 200 |
| abstract_inverted_index.performed. | 48 |
| abstract_inverted_index.remarkable | 83 |
| abstract_inverted_index.systematic | 128 |
| abstract_inverted_index.well-known | 208 |
| abstract_inverted_index.approaches. | 203, 221 |
| abstract_inverted_index.challenging | 233 |
| abstract_inverted_index.components: | 159 |
| abstract_inverted_index.demonstrate | 218 |
| abstract_inverted_index.fundamental | 3, 158 |
| abstract_inverted_index.generative, | 199 |
| abstract_inverted_index.multistage, | 198 |
| abstract_inverted_index.open-source | 214 |
| abstract_inverted_index.significant | 61 |
| abstract_inverted_index.techniques, | 107 |
| abstract_inverted_index.Furthermore, | 180 |
| abstract_inverted_index.applications | 227 |
| abstract_inverted_index.considerable | 109 |
| abstract_inverted_index.experimental | 220 |
| abstract_inverted_index.simultaneous | 202 |
| abstract_inverted_index.specifically | 196 |
| abstract_inverted_index.advancements, | 96 |
| abstract_inverted_index.comprehensive | 132 |
| abstract_inverted_index.contributions | 118 |
| abstract_inverted_index.relationships | 72 |
| abstract_inverted_index.indiscriminate | 68 |
| abstract_inverted_index.relationships. | 92 |
| abstract_inverted_index.representation | 69, 87, 161 |
| abstract_inverted_index.representative | 174 |
| abstract_inverted_index.high-dimensional | 51 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 10 |
| citation_normalized_percentile.value | 0.99616667 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |