A Compressed Sensing Approach to Group-testing for COVID-19 Detection Article Swipe
YOU?
·
· 2020
· Open Access
·
We propose Tapestry, a novel approach to pooled testing with application to COVID-19 testing with quantitative Polymerase Chain Reaction (PCR) that can result in shorter testing time and conservation of reagents and testing kits. Tapestry combines ideas from compressed sensing and combinatorial group testing with a novel noise model for PCR. Unlike Boolean group testing algorithms, the input is a quantitative readout from each test, and the output is a list of viral loads for each sample. While other pooling techniques require a second confirmatory assay, Tapestry obtains individual sample-level results in a single round of testing. When testing $n$ samples with $t$ tests, as many as $k= O(t / \log n)$ infected samples can be identified at clinically-acceptable false positive and false negative rates. This makes Tapestry viable even at prevalence rates as high as 10\%. Tapestry has been validated in simulations as well as in wet lab experiments with oligomers. Clinical trials with Covid-19 samples are underway. An accompanying Android application Byom Smart Testing which makes the Tapestry protocol straightforward to implement in testing centres is available for free download.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://arxiv.org/abs/2005.07895v1
- OA Status
- green
- Cited By
- 28
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W3024371971
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3024371971Canonical identifier for this work in OpenAlex
- Title
-
A Compressed Sensing Approach to Group-testing for COVID-19 DetectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-16Full publication date if available
- Authors
-
Sabyasachi Ghosh, Rishi Agarwal, Mohammad Ali Rehan, Shreya Pathak, Pratyush Agrawal, Yash Gupta, Sarthak Consul, Nimay Gupta, Ritika Goyal, Ajit Rajwade, Manoj GopalkrishnanList of authors in order
- Landing page
-
https://arxiv.org/abs/2005.07895v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/abs/2005.07895v1Direct OA link when available
- Concepts
-
Group testing, Pooling, Computer science, Test strategy, Protocol (science), Coronavirus disease 2019 (COVID-19), Sample (material), Compressed sensing, Android (operating system), Statistics, Algorithm, Mathematics, Artificial intelligence, Medicine, Combinatorics, Pathology, Operating system, Software, Chromatography, Chemistry, Alternative medicine, Disease, Infectious disease (medical specialty)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
28Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 1, 2022: 4, 2021: 12, 2020: 10Per-year citation counts (last 5 years)
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3024371971 |
|---|---|
| doi | |
| ids.mag | 3024371971 |
| ids.openalex | https://openalex.org/W3024371971 |
| fwci | 0.77454595 |
| type | article |
| title | A Compressed Sensing Approach to Group-testing for COVID-19 Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11754 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2725 |
| topics[0].subfield.display_name | Infectious Diseases |
| topics[0].display_name | SARS-CoV-2 detection and testing |
| topics[1].id | https://openalex.org/T11393 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9944999814033508 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Biosensors and Analytical Detection |
| topics[2].id | https://openalex.org/T12867 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9936000108718872 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1312 |
| topics[2].subfield.display_name | Molecular Biology |
| topics[2].display_name | Advanced Biosensing Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177580056 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8620140552520752 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5611272 |
| concepts[0].display_name | Group testing |
| concepts[1].id | https://openalex.org/C70437156 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7343311309814453 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7228652 |
| concepts[1].display_name | Pooling |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5577787160873413 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C188598960 |
| concepts[3].level | 3 |
| concepts[3].score | 0.524910569190979 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7705805 |
| concepts[3].display_name | Test strategy |
| concepts[4].id | https://openalex.org/C2780385302 |
| concepts[4].level | 3 |
| concepts[4].score | 0.521780788898468 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q367158 |
| concepts[4].display_name | Protocol (science) |
| concepts[5].id | https://openalex.org/C3008058167 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5050130486488342 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[5].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[6].id | https://openalex.org/C198531522 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4515506327152252 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q485146 |
| concepts[6].display_name | Sample (material) |
| concepts[7].id | https://openalex.org/C124851039 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4190857708454132 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2665459 |
| concepts[7].display_name | Compressed sensing |
| concepts[8].id | https://openalex.org/C557433098 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4160063564777374 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q94 |
| concepts[8].display_name | Android (operating system) |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3513656258583069 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.26626747846603394 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.26361384987831116 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.24348941445350647 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C71924100 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1812126636505127 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[13].display_name | Medicine |
| concepts[14].id | https://openalex.org/C114614502 |
| concepts[14].level | 1 |
| concepts[14].score | 0.14801520109176636 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[14].display_name | Combinatorics |
| concepts[15].id | https://openalex.org/C142724271 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1158372163772583 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[15].display_name | Pathology |
| concepts[16].id | https://openalex.org/C111919701 |
| concepts[16].level | 1 |
| concepts[16].score | 0.10104760527610779 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[16].display_name | Operating system |
| concepts[17].id | https://openalex.org/C2777904410 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0922597348690033 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7397 |
| concepts[17].display_name | Software |
| concepts[18].id | https://openalex.org/C43617362 |
| concepts[18].level | 1 |
| concepts[18].score | 0.08721798658370972 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[18].display_name | Chromatography |
| concepts[19].id | https://openalex.org/C185592680 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[19].display_name | Chemistry |
| concepts[20].id | https://openalex.org/C204787440 |
| concepts[20].level | 2 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q188504 |
| concepts[20].display_name | Alternative medicine |
| concepts[21].id | https://openalex.org/C2779134260 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[21].display_name | Disease |
| concepts[22].id | https://openalex.org/C524204448 |
| concepts[22].level | 3 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[22].display_name | Infectious disease (medical specialty) |
| keywords[0].id | https://openalex.org/keywords/group-testing |
| keywords[0].score | 0.8620140552520752 |
| keywords[0].display_name | Group testing |
| keywords[1].id | https://openalex.org/keywords/pooling |
| keywords[1].score | 0.7343311309814453 |
| keywords[1].display_name | Pooling |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5577787160873413 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/test-strategy |
| keywords[3].score | 0.524910569190979 |
| keywords[3].display_name | Test strategy |
| keywords[4].id | https://openalex.org/keywords/protocol |
| keywords[4].score | 0.521780788898468 |
| keywords[4].display_name | Protocol (science) |
| keywords[5].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[5].score | 0.5050130486488342 |
| keywords[5].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[6].id | https://openalex.org/keywords/sample |
| keywords[6].score | 0.4515506327152252 |
| keywords[6].display_name | Sample (material) |
| keywords[7].id | https://openalex.org/keywords/compressed-sensing |
| keywords[7].score | 0.4190857708454132 |
| keywords[7].display_name | Compressed sensing |
| keywords[8].id | https://openalex.org/keywords/android |
| keywords[8].score | 0.4160063564777374 |
| keywords[8].display_name | Android (operating system) |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.3513656258583069 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.26626747846603394 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.26361384987831116 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.24348941445350647 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/medicine |
| keywords[13].score | 0.1812126636505127 |
| keywords[13].display_name | Medicine |
| keywords[14].id | https://openalex.org/keywords/combinatorics |
| keywords[14].score | 0.14801520109176636 |
| keywords[14].display_name | Combinatorics |
| keywords[15].id | https://openalex.org/keywords/pathology |
| keywords[15].score | 0.1158372163772583 |
| keywords[15].display_name | Pathology |
| keywords[16].id | https://openalex.org/keywords/operating-system |
| keywords[16].score | 0.10104760527610779 |
| keywords[16].display_name | Operating system |
| keywords[17].id | https://openalex.org/keywords/software |
| keywords[17].score | 0.0922597348690033 |
| keywords[17].display_name | Software |
| keywords[18].id | https://openalex.org/keywords/chromatography |
| keywords[18].score | 0.08721798658370972 |
| keywords[18].display_name | Chromatography |
| language | en |
| locations[0].id | mag:3024371971 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/abs/2005.07895v1 |
| authorships[0].author.id | https://openalex.org/A5085494874 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9607-3375 |
| authorships[0].author.display_name | Sabyasachi Ghosh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sabyasachi Ghosh |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5048201218 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1284-2593 |
| authorships[1].author.display_name | Rishi Agarwal |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rishi Agarwal |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5018262179 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7771-7259 |
| authorships[2].author.display_name | Mohammad Ali Rehan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mohammad Ali Rehan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5056884424 |
| authorships[3].author.orcid | https://orcid.org/0009-0001-0014-7913 |
| authorships[3].author.display_name | Shreya Pathak |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shreya Pathak |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5029004224 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4298-7854 |
| authorships[4].author.display_name | Pratyush Agrawal |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Pratyush Agrawal |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5034675555 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-3002-1315 |
| authorships[5].author.display_name | Yash Gupta |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yash Gupta |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5040738554 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Sarthak Consul |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Sarthak Consul |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5058249021 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Nimay Gupta |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Nimay Gupta |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5080764578 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Ritika Goyal |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Ritika Goyal |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5072824358 |
| authorships[9].author.orcid | https://orcid.org/0000-0001-6463-3315 |
| authorships[9].author.display_name | Ajit Rajwade |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Ajit Rajwade |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5014099796 |
| authorships[10].author.orcid | |
| authorships[10].author.display_name | Manoj Gopalkrishnan |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Manoj Gopalkrishnan |
| authorships[10].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/abs/2005.07895v1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Compressed Sensing Approach to Group-testing for COVID-19 Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T11754 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2725 |
| primary_topic.subfield.display_name | Infectious Diseases |
| primary_topic.display_name | SARS-CoV-2 detection and testing |
| related_works | https://openalex.org/W1975680434, https://openalex.org/W3099488484, https://openalex.org/W3080991685, https://openalex.org/W3023086180, https://openalex.org/W3022798007, https://openalex.org/W3016677553, https://openalex.org/W3015317804, https://openalex.org/W3013085536, https://openalex.org/W3015663348, https://openalex.org/W3014846055, https://openalex.org/W3158118580, https://openalex.org/W3036757363, https://openalex.org/W3022807263, https://openalex.org/W3019625944, https://openalex.org/W3014566639, https://openalex.org/W1968160142, https://openalex.org/W3048889434, https://openalex.org/W2112118326, https://openalex.org/W2127893137, https://openalex.org/W1968199120 |
| cited_by_count | 28 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2021 |
| counts_by_year[3].cited_by_count | 12 |
| counts_by_year[4].year | 2020 |
| counts_by_year[4].cited_by_count | 10 |
| locations_count | 1 |
| best_oa_location.id | mag:3024371971 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/abs/2005.07895v1 |
| primary_location.id | mag:3024371971 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/abs/2005.07895v1 |
| publication_date | 2020-05-16 |
| publication_year | 2020 |
| referenced_works_count | 0 |
| abstract_inverted_index./ | 109 |
| abstract_inverted_index.a | 3, 45, 59, 69, 82, 92 |
| abstract_inverted_index.An | 159 |
| abstract_inverted_index.We | 0 |
| abstract_inverted_index.as | 104, 106, 133, 135, 143, 145 |
| abstract_inverted_index.at | 117, 130 |
| abstract_inverted_index.be | 115 |
| abstract_inverted_index.in | 23, 91, 141, 146, 174 |
| abstract_inverted_index.is | 58, 68, 177 |
| abstract_inverted_index.of | 29, 71, 95 |
| abstract_inverted_index.to | 6, 11, 172 |
| abstract_inverted_index.$k= | 107 |
| abstract_inverted_index.$n$ | 99 |
| abstract_inverted_index.$t$ | 102 |
| abstract_inverted_index.O(t | 108 |
| abstract_inverted_index.and | 27, 31, 40, 65, 121 |
| abstract_inverted_index.are | 157 |
| abstract_inverted_index.can | 21, 114 |
| abstract_inverted_index.for | 49, 74, 179 |
| abstract_inverted_index.has | 138 |
| abstract_inverted_index.lab | 148 |
| abstract_inverted_index.n)$ | 111 |
| abstract_inverted_index.the | 56, 66, 168 |
| abstract_inverted_index.wet | 147 |
| abstract_inverted_index.Byom | 163 |
| abstract_inverted_index.PCR. | 50 |
| abstract_inverted_index.This | 125 |
| abstract_inverted_index.When | 97 |
| abstract_inverted_index.\log | 110 |
| abstract_inverted_index.been | 139 |
| abstract_inverted_index.each | 63, 75 |
| abstract_inverted_index.even | 129 |
| abstract_inverted_index.free | 180 |
| abstract_inverted_index.from | 37, 62 |
| abstract_inverted_index.high | 134 |
| abstract_inverted_index.list | 70 |
| abstract_inverted_index.many | 105 |
| abstract_inverted_index.that | 20 |
| abstract_inverted_index.time | 26 |
| abstract_inverted_index.well | 144 |
| abstract_inverted_index.with | 9, 14, 44, 101, 150, 154 |
| abstract_inverted_index.(PCR) | 19 |
| abstract_inverted_index.10\%. | 136 |
| abstract_inverted_index.Chain | 17 |
| abstract_inverted_index.Smart | 164 |
| abstract_inverted_index.While | 77 |
| abstract_inverted_index.false | 119, 122 |
| abstract_inverted_index.group | 42, 53 |
| abstract_inverted_index.ideas | 36 |
| abstract_inverted_index.input | 57 |
| abstract_inverted_index.kits. | 33 |
| abstract_inverted_index.loads | 73 |
| abstract_inverted_index.makes | 126, 167 |
| abstract_inverted_index.model | 48 |
| abstract_inverted_index.noise | 47 |
| abstract_inverted_index.novel | 4, 46 |
| abstract_inverted_index.other | 78 |
| abstract_inverted_index.rates | 132 |
| abstract_inverted_index.round | 94 |
| abstract_inverted_index.test, | 64 |
| abstract_inverted_index.viral | 72 |
| abstract_inverted_index.which | 166 |
| abstract_inverted_index.Unlike | 51 |
| abstract_inverted_index.assay, | 85 |
| abstract_inverted_index.output | 67 |
| abstract_inverted_index.pooled | 7 |
| abstract_inverted_index.rates. | 124 |
| abstract_inverted_index.result | 22 |
| abstract_inverted_index.second | 83 |
| abstract_inverted_index.single | 93 |
| abstract_inverted_index.tests, | 103 |
| abstract_inverted_index.trials | 153 |
| abstract_inverted_index.viable | 128 |
| abstract_inverted_index.Android | 161 |
| abstract_inverted_index.Boolean | 52 |
| abstract_inverted_index.Testing | 165 |
| abstract_inverted_index.centres | 176 |
| abstract_inverted_index.obtains | 87 |
| abstract_inverted_index.pooling | 79 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.readout | 61 |
| abstract_inverted_index.require | 81 |
| abstract_inverted_index.results | 90 |
| abstract_inverted_index.sample. | 76 |
| abstract_inverted_index.samples | 100, 113, 156 |
| abstract_inverted_index.sensing | 39 |
| abstract_inverted_index.shorter | 24 |
| abstract_inverted_index.testing | 8, 13, 25, 32, 43, 54, 98, 175 |
| abstract_inverted_index.COVID-19 | 12 |
| abstract_inverted_index.Clinical | 152 |
| abstract_inverted_index.Covid-19 | 155 |
| abstract_inverted_index.Reaction | 18 |
| abstract_inverted_index.Tapestry | 34, 86, 127, 137, 169 |
| abstract_inverted_index.approach | 5 |
| abstract_inverted_index.combines | 35 |
| abstract_inverted_index.infected | 112 |
| abstract_inverted_index.negative | 123 |
| abstract_inverted_index.positive | 120 |
| abstract_inverted_index.protocol | 170 |
| abstract_inverted_index.reagents | 30 |
| abstract_inverted_index.testing. | 96 |
| abstract_inverted_index.Tapestry, | 2 |
| abstract_inverted_index.available | 178 |
| abstract_inverted_index.download. | 181 |
| abstract_inverted_index.implement | 173 |
| abstract_inverted_index.underway. | 158 |
| abstract_inverted_index.validated | 140 |
| abstract_inverted_index.Polymerase | 16 |
| abstract_inverted_index.compressed | 38 |
| abstract_inverted_index.identified | 116 |
| abstract_inverted_index.individual | 88 |
| abstract_inverted_index.oligomers. | 151 |
| abstract_inverted_index.prevalence | 131 |
| abstract_inverted_index.techniques | 80 |
| abstract_inverted_index.algorithms, | 55 |
| abstract_inverted_index.application | 10, 162 |
| abstract_inverted_index.experiments | 149 |
| abstract_inverted_index.simulations | 142 |
| abstract_inverted_index.accompanying | 160 |
| abstract_inverted_index.confirmatory | 84 |
| abstract_inverted_index.conservation | 28 |
| abstract_inverted_index.quantitative | 15, 60 |
| abstract_inverted_index.sample-level | 89 |
| abstract_inverted_index.combinatorial | 41 |
| abstract_inverted_index.straightforward | 171 |
| abstract_inverted_index.clinically-acceptable | 118 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6700000166893005 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.82830065 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |