A Compressive Memory-based Retrieval Approach for Event Argument Extraction Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2409.09322
Recent works have demonstrated the effectiveness of retrieval augmentation in the Event Argument Extraction (EAE) task. However, existing retrieval-based EAE methods have two main limitations: (1) input length constraints and (2) the gap between the retriever and the inference model. These issues limit the diversity and quality of the retrieved information. In this paper, we propose a Compressive Memory-based Retrieval (CMR) mechanism for EAE, which addresses the two limitations mentioned above. Our compressive memory, designed as a dynamic matrix that effectively caches retrieved information and supports continuous updates, overcomes the limitations of the input length. Additionally, after pre-loading all candidate demonstrations into the compressive memory, the model further retrieves and filters relevant information from memory based on the input query, bridging the gap between the retriever and the inference model. Extensive experiments show that our method achieves new state-of-the-art performance on three public datasets (RAMS, WikiEvents, ACE05), significantly outperforming existing retrieval-based EAE methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2409.09322
- https://arxiv.org/pdf/2409.09322
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4403667102
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4403667102Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2409.09322Digital Object Identifier
- Title
-
A Compressive Memory-based Retrieval Approach for Event Argument ExtractionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-09-14Full publication date if available
- Authors
-
Wanlong Liu, Enqi Zhang, Qin Li, Dingyi Zeng, Shaohuan Cheng, Chen Zhang, Malu Zhang, Wenyu ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2409.09322Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2409.09322Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2409.09322Direct OA link when available
- Concepts
-
Argument (complex analysis), Event (particle physics), Computer science, Extraction (chemistry), Information retrieval, Natural language processing, Artificial intelligence, Chromatography, Physics, Chemistry, Biochemistry, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4403667102 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2409.09322 |
| ids.doi | https://doi.org/10.48550/arxiv.2409.09322 |
| ids.openalex | https://openalex.org/W4403667102 |
| fwci | |
| type | preprint |
| title | A Compressive Memory-based Retrieval Approach for Event Argument Extraction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9896000027656555 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T13083 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9835000038146973 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Advanced Text Analysis Techniques |
| topics[2].id | https://openalex.org/T10260 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9671000242233276 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Software Engineering Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C98184364 |
| concepts[0].level | 2 |
| concepts[0].score | 0.687375545501709 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1780131 |
| concepts[0].display_name | Argument (complex analysis) |
| concepts[1].id | https://openalex.org/C2779662365 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6501807570457458 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5416694 |
| concepts[1].display_name | Event (particle physics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5708701610565186 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C4725764 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5609712600708008 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844704 |
| concepts[3].display_name | Extraction (chemistry) |
| concepts[4].id | https://openalex.org/C23123220 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3947800397872925 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[4].display_name | Information retrieval |
| concepts[5].id | https://openalex.org/C204321447 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3783561587333679 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[5].display_name | Natural language processing |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3294610381126404 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C43617362 |
| concepts[7].level | 1 |
| concepts[7].score | 0.11247548460960388 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q170050 |
| concepts[7].display_name | Chromatography |
| concepts[8].id | https://openalex.org/C121332964 |
| concepts[8].level | 0 |
| concepts[8].score | 0.06791067123413086 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[8].display_name | Physics |
| concepts[9].id | https://openalex.org/C185592680 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06696495413780212 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[9].display_name | Chemistry |
| concepts[10].id | https://openalex.org/C55493867 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[10].display_name | Biochemistry |
| concepts[11].id | https://openalex.org/C62520636 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[11].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/argument |
| keywords[0].score | 0.687375545501709 |
| keywords[0].display_name | Argument (complex analysis) |
| keywords[1].id | https://openalex.org/keywords/event |
| keywords[1].score | 0.6501807570457458 |
| keywords[1].display_name | Event (particle physics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5708701610565186 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/extraction |
| keywords[3].score | 0.5609712600708008 |
| keywords[3].display_name | Extraction (chemistry) |
| keywords[4].id | https://openalex.org/keywords/information-retrieval |
| keywords[4].score | 0.3947800397872925 |
| keywords[4].display_name | Information retrieval |
| keywords[5].id | https://openalex.org/keywords/natural-language-processing |
| keywords[5].score | 0.3783561587333679 |
| keywords[5].display_name | Natural language processing |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.3294610381126404 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/chromatography |
| keywords[7].score | 0.11247548460960388 |
| keywords[7].display_name | Chromatography |
| keywords[8].id | https://openalex.org/keywords/physics |
| keywords[8].score | 0.06791067123413086 |
| keywords[8].display_name | Physics |
| keywords[9].id | https://openalex.org/keywords/chemistry |
| keywords[9].score | 0.06696495413780212 |
| keywords[9].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2409.09322 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2409.09322 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2409.09322 |
| locations[1].id | doi:10.48550/arxiv.2409.09322 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2409.09322 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5088958298 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8958-2478 |
| authorships[0].author.display_name | Wanlong Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Wanlong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5058600075 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2769-5135 |
| authorships[1].author.display_name | Enqi Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Enqi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100438883 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6393-3236 |
| authorships[2].author.display_name | Qin Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhou, Li |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5021284480 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1572-7400 |
| authorships[3].author.display_name | Dingyi Zeng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zeng, Dingyi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5055973356 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8197-6632 |
| authorships[4].author.display_name | Shaohuan Cheng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cheng, Shaohuan |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100374113 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3306-9317 |
| authorships[5].author.display_name | Chen Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Chen |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5031886937 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2345-0974 |
| authorships[6].author.display_name | Malu Zhang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhang, Malu |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5100687323 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9933-8014 |
| authorships[7].author.display_name | Wenyu Chen |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Chen, Wenyu |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2409.09322 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-10-24T00:00:00 |
| display_name | A Compressive Memory-based Retrieval Approach for Event Argument Extraction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9896000027656555 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W3008380943, https://openalex.org/W2115206405, https://openalex.org/W4387718383, https://openalex.org/W1528986568, https://openalex.org/W2500746363, https://openalex.org/W2062799661, https://openalex.org/W2347954438, https://openalex.org/W2071460425, https://openalex.org/W1999164976, https://openalex.org/W2946506623 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2409.09322 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2409.09322 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2409.09322 |
| primary_location.id | pmh:oai:arXiv.org:2409.09322 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2409.09322 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2409.09322 |
| publication_date | 2024-09-14 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 56, 76 |
| abstract_inverted_index.In | 51 |
| abstract_inverted_index.as | 75 |
| abstract_inverted_index.in | 9 |
| abstract_inverted_index.of | 6, 47, 91 |
| abstract_inverted_index.on | 116, 140 |
| abstract_inverted_index.we | 54 |
| abstract_inverted_index.(1) | 25 |
| abstract_inverted_index.(2) | 30 |
| abstract_inverted_index.EAE | 19, 151 |
| abstract_inverted_index.Our | 71 |
| abstract_inverted_index.all | 98 |
| abstract_inverted_index.and | 29, 36, 45, 84, 109, 126 |
| abstract_inverted_index.for | 62 |
| abstract_inverted_index.gap | 32, 122 |
| abstract_inverted_index.new | 137 |
| abstract_inverted_index.our | 134 |
| abstract_inverted_index.the | 4, 10, 31, 34, 37, 43, 48, 66, 89, 92, 102, 105, 117, 121, 124, 127 |
| abstract_inverted_index.two | 22, 67 |
| abstract_inverted_index.EAE, | 63 |
| abstract_inverted_index.from | 113 |
| abstract_inverted_index.have | 2, 21 |
| abstract_inverted_index.into | 101 |
| abstract_inverted_index.main | 23 |
| abstract_inverted_index.show | 132 |
| abstract_inverted_index.that | 79, 133 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.(CMR) | 60 |
| abstract_inverted_index.(EAE) | 14 |
| abstract_inverted_index.Event | 11 |
| abstract_inverted_index.These | 40 |
| abstract_inverted_index.after | 96 |
| abstract_inverted_index.based | 115 |
| abstract_inverted_index.input | 26, 93, 118 |
| abstract_inverted_index.limit | 42 |
| abstract_inverted_index.model | 106 |
| abstract_inverted_index.task. | 15 |
| abstract_inverted_index.three | 141 |
| abstract_inverted_index.which | 64 |
| abstract_inverted_index.works | 1 |
| abstract_inverted_index.(RAMS, | 144 |
| abstract_inverted_index.Recent | 0 |
| abstract_inverted_index.above. | 70 |
| abstract_inverted_index.caches | 81 |
| abstract_inverted_index.issues | 41 |
| abstract_inverted_index.length | 27 |
| abstract_inverted_index.matrix | 78 |
| abstract_inverted_index.memory | 114 |
| abstract_inverted_index.method | 135 |
| abstract_inverted_index.model. | 39, 129 |
| abstract_inverted_index.paper, | 53 |
| abstract_inverted_index.public | 142 |
| abstract_inverted_index.query, | 119 |
| abstract_inverted_index.ACE05), | 146 |
| abstract_inverted_index.between | 33, 123 |
| abstract_inverted_index.dynamic | 77 |
| abstract_inverted_index.filters | 110 |
| abstract_inverted_index.further | 107 |
| abstract_inverted_index.length. | 94 |
| abstract_inverted_index.memory, | 73, 104 |
| abstract_inverted_index.methods | 20 |
| abstract_inverted_index.propose | 55 |
| abstract_inverted_index.quality | 46 |
| abstract_inverted_index.Argument | 12 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.achieves | 136 |
| abstract_inverted_index.bridging | 120 |
| abstract_inverted_index.datasets | 143 |
| abstract_inverted_index.designed | 74 |
| abstract_inverted_index.existing | 17, 149 |
| abstract_inverted_index.methods. | 152 |
| abstract_inverted_index.relevant | 111 |
| abstract_inverted_index.supports | 85 |
| abstract_inverted_index.updates, | 87 |
| abstract_inverted_index.Extensive | 130 |
| abstract_inverted_index.Retrieval | 59 |
| abstract_inverted_index.addresses | 65 |
| abstract_inverted_index.candidate | 99 |
| abstract_inverted_index.diversity | 44 |
| abstract_inverted_index.inference | 38, 128 |
| abstract_inverted_index.mechanism | 61 |
| abstract_inverted_index.mentioned | 69 |
| abstract_inverted_index.overcomes | 88 |
| abstract_inverted_index.retrieval | 7 |
| abstract_inverted_index.retrieved | 49, 82 |
| abstract_inverted_index.retriever | 35, 125 |
| abstract_inverted_index.retrieves | 108 |
| abstract_inverted_index.Extraction | 13 |
| abstract_inverted_index.continuous | 86 |
| abstract_inverted_index.Compressive | 57 |
| abstract_inverted_index.WikiEvents, | 145 |
| abstract_inverted_index.compressive | 72, 103 |
| abstract_inverted_index.constraints | 28 |
| abstract_inverted_index.effectively | 80 |
| abstract_inverted_index.experiments | 131 |
| abstract_inverted_index.information | 83, 112 |
| abstract_inverted_index.limitations | 68, 90 |
| abstract_inverted_index.performance | 139 |
| abstract_inverted_index.pre-loading | 97 |
| abstract_inverted_index.Memory-based | 58 |
| abstract_inverted_index.augmentation | 8 |
| abstract_inverted_index.demonstrated | 3 |
| abstract_inverted_index.information. | 50 |
| abstract_inverted_index.limitations: | 24 |
| abstract_inverted_index.Additionally, | 95 |
| abstract_inverted_index.effectiveness | 5 |
| abstract_inverted_index.outperforming | 148 |
| abstract_inverted_index.significantly | 147 |
| abstract_inverted_index.demonstrations | 100 |
| abstract_inverted_index.retrieval-based | 18, 150 |
| abstract_inverted_index.state-of-the-art | 138 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |