A computational framework for interface design using lattice matching, machine learning potentials, and active learning: A case study on LaCoO3/La2NiO4 Article Swipe
Guang-Chen Liu
,
Songge Yang
,
Yu Zhong
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.mtphys.2025.101940
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1016/j.mtphys.2025.101940
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.mtphys.2025.101940
- OA Status
- hybrid
- References
- 39
- OpenAlex ID
- https://openalex.org/W7105851665
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W7105851665Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.mtphys.2025.101940Digital Object Identifier
- Title
-
A computational framework for interface design using lattice matching, machine learning potentials, and active learning: A case study on LaCoO3/La2NiO4Work title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-17Full publication date if available
- Authors
-
Guang-Chen Liu, Songge Yang, Yu ZhongList of authors in order
- Landing page
-
https://doi.org/10.1016/j.mtphys.2025.101940Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.mtphys.2025.101940Direct OA link when available
- Concepts
-
Materials science, Lattice (music), Artificial intelligence, Interface (matter), Machine learning, Computer science, Active learning (machine learning), Computational learning theory, User interface, Interface design, Algorithm, Support vector machineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
39Number of works referenced by this work
Full payload
| id | https://openalex.org/W7105851665 |
|---|---|
| doi | https://doi.org/10.1016/j.mtphys.2025.101940 |
| ids.doi | https://doi.org/10.1016/j.mtphys.2025.101940 |
| ids.openalex | https://openalex.org/W7105851665 |
| fwci | 0.0 |
| type | article |
| title | A computational framework for interface design using lattice matching, machine learning potentials, and active learning: A case study on LaCoO3/La2NiO4 |
| biblio.issue | |
| biblio.volume | 59 |
| biblio.last_page | 101940 |
| biblio.first_page | 101940 |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.3998958170413971 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T12046 |
| topics[1].field.id | https://openalex.org/fields/25 |
| topics[1].field.display_name | Materials Science |
| topics[1].score | 0.10940802842378616 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2505 |
| topics[1].subfield.display_name | Materials Chemistry |
| topics[1].display_name | MXene and MAX Phase Materials |
| topics[2].id | https://openalex.org/T12557 |
| topics[2].field.id | https://openalex.org/fields/16 |
| topics[2].field.display_name | Chemistry |
| topics[2].score | 0.08182866126298904 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1604 |
| topics[2].subfield.display_name | Inorganic Chemistry |
| topics[2].display_name | Inorganic Chemistry and Materials |
| is_xpac | False |
| apc_list.value | 4250 |
| apc_list.currency | USD |
| apc_list.value_usd | 4250 |
| apc_paid.value | 4250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4250 |
| concepts[0].id | https://openalex.org/C192562407 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6950273513793945 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[0].display_name | Materials science |
| concepts[1].id | https://openalex.org/C2781204021 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5637893676757812 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6497091 |
| concepts[1].display_name | Lattice (music) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.4857484698295593 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C113843644 |
| concepts[3].level | 4 |
| concepts[3].score | 0.4806714653968811 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q901882 |
| concepts[3].display_name | Interface (matter) |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4617341458797455 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.39581403136253357 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C77967617 |
| concepts[6].level | 2 |
| concepts[6].score | 0.3278528153896332 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4677561 |
| concepts[6].display_name | Active learning (machine learning) |
| concepts[7].id | https://openalex.org/C50292564 |
| concepts[7].level | 3 |
| concepts[7].score | 0.3120728135108948 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2462783 |
| concepts[7].display_name | Computational learning theory |
| concepts[8].id | https://openalex.org/C89505385 |
| concepts[8].level | 2 |
| concepts[8].score | 0.30269065499305725 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q47146 |
| concepts[8].display_name | User interface |
| concepts[9].id | https://openalex.org/C139366241 |
| concepts[9].level | 2 |
| concepts[9].score | 0.2716854512691498 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q135707 |
| concepts[9].display_name | Interface design |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.26797330379486084 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C12267149 |
| concepts[11].level | 2 |
| concepts[11].score | 0.25335487723350525 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[11].display_name | Support vector machine |
| keywords[0].id | https://openalex.org/keywords/lattice |
| keywords[0].score | 0.5637893676757812 |
| keywords[0].display_name | Lattice (music) |
| keywords[1].id | https://openalex.org/keywords/interface |
| keywords[1].score | 0.4806714653968811 |
| keywords[1].display_name | Interface (matter) |
| keywords[2].id | https://openalex.org/keywords/active-learning |
| keywords[2].score | 0.3278528153896332 |
| keywords[2].display_name | Active learning (machine learning) |
| keywords[3].id | https://openalex.org/keywords/computational-learning-theory |
| keywords[3].score | 0.3120728135108948 |
| keywords[3].display_name | Computational learning theory |
| keywords[4].id | https://openalex.org/keywords/user-interface |
| keywords[4].score | 0.30269065499305725 |
| keywords[4].display_name | User interface |
| language | en |
| locations[0].id | doi:10.1016/j.mtphys.2025.101940 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2898609469 |
| locations[0].source.issn | 2542-5293 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2542-5293 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Materials Today Physics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Materials Today Physics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.mtphys.2025.101940 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A2153628671 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7569-1510 |
| authorships[0].author.display_name | Guang-Chen Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guangchen Liu |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A2224830399 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8768-9311 |
| authorships[1].author.display_name | Songge Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Songge Yang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A2026209636 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5428-1774 |
| authorships[2].author.display_name | Yu Zhong |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Yu Zhong |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.mtphys.2025.101940 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-17T00:00:00 |
| display_name | A computational framework for interface design using lattice matching, machine learning potentials, and active learning: A case study on LaCoO3/La2NiO4 |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-18T23:42:31.664661 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.3998958170413971 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.mtphys.2025.101940 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2898609469 |
| best_oa_location.source.issn | 2542-5293 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2542-5293 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Materials Today Physics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Materials Today Physics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.mtphys.2025.101940 |
| primary_location.id | doi:10.1016/j.mtphys.2025.101940 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2898609469 |
| primary_location.source.issn | 2542-5293 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2542-5293 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Materials Today Physics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Materials Today Physics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.mtphys.2025.101940 |
| publication_date | 2025-11-17 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3129420155, https://openalex.org/W2046746459, https://openalex.org/W2978461098, https://openalex.org/W2807962003, https://openalex.org/W2037520782, https://openalex.org/W2055100431, https://openalex.org/W2740598477, https://openalex.org/W2063313748, https://openalex.org/W3041512563, https://openalex.org/W4200464202, https://openalex.org/W4364381813, https://openalex.org/W2963339823, https://openalex.org/W4205426733, https://openalex.org/W2956468808, https://openalex.org/W2886026382, https://openalex.org/W2749006386, https://openalex.org/W2980888952, https://openalex.org/W3035012408, https://openalex.org/W2788484525, https://openalex.org/W4282041110, https://openalex.org/W2775708988, https://openalex.org/W2778051509, https://openalex.org/W2541404351, https://openalex.org/W4310135808, https://openalex.org/W2017591438, https://openalex.org/W4377263839, https://openalex.org/W2057671148, https://openalex.org/W2097731891, https://openalex.org/W2090608158, https://openalex.org/W2112383255, https://openalex.org/W2083287340, https://openalex.org/W2051434435, https://openalex.org/W2502655619, https://openalex.org/W2949676527, https://openalex.org/W2010289393, https://openalex.org/W2484171837, https://openalex.org/W2081741271, https://openalex.org/W1991922600, https://openalex.org/W2113975159 |
| referenced_works_count | 39 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.6750882 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |