A Connectome Based Hexagonal Lattice Convolutional Network Model of the\n Drosophila Visual System Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1806.04793
What can we learn from a connectome? We constructed a simplified model of the\nfirst two stages of the fly visual system, the lamina and medulla. The\nresulting hexagonal lattice convolutional network was trained using\nbackpropagation through time to perform object tracking in natural scene\nvideos. Networks initialized with weights from connectome reconstructions\nautomatically discovered well-known orientation and direction selectivity\nproperties in T4 neurons and their inputs, while networks initialized at random\ndid not. Our work is the first demonstration, that knowledge of the connectome\ncan enable in silico predictions of the functional properties of individual\nneurons in a circuit, leading to an understanding of circuit function from\nstructure alone.\n
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/1806.04793
- https://arxiv.org/pdf/1806.04793
- OA Status
- green
- Cited By
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4301688880
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4301688880Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1806.04793Digital Object Identifier
- Title
-
A Connectome Based Hexagonal Lattice Convolutional Network Model of the\n Drosophila Visual SystemWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2018Year of publication
- Publication date
-
2018-06-12Full publication date if available
- Authors
-
Fabian Tschopp, Michael B. Reiser, Srinivas C. TuragaList of authors in order
- Landing page
-
https://arxiv.org/abs/1806.04793Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1806.04793Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1806.04793Direct OA link when available
- Concepts
-
Connectome, Computer science, Artificial intelligence, Lattice (music), Convolutional neural network, Orientation (vector space), Hexagonal crystal system, Computer vision, Neuroscience, Biology, Physics, Mathematics, Functional connectivity, Crystallography, Acoustics, Geometry, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2, 2022: 1, 2021: 3, 2020: 1, 2019: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4301688880 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1806.04793 |
| ids.openalex | https://openalex.org/W4301688880 |
| fwci | 0.88524468 |
| type | preprint |
| title | A Connectome Based Hexagonal Lattice Convolutional Network Model of the\n Drosophila Visual System |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10423 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9980999827384949 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2804 |
| topics[0].subfield.display_name | Cellular and Molecular Neuroscience |
| topics[0].display_name | Neurobiology and Insect Physiology Research |
| topics[1].id | https://openalex.org/T10702 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9822999835014343 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1311 |
| topics[1].subfield.display_name | Genetics |
| topics[1].display_name | Insect and Arachnid Ecology and Behavior |
| topics[2].id | https://openalex.org/T10581 |
| topics[2].field.id | https://openalex.org/fields/28 |
| topics[2].field.display_name | Neuroscience |
| topics[2].score | 0.9811000227928162 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2805 |
| topics[2].subfield.display_name | Cognitive Neuroscience |
| topics[2].display_name | Neural dynamics and brain function |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C45715564 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8866438269615173 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1292103 |
| concepts[0].display_name | Connectome |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6917200684547424 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.503415048122406 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2781204021 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4704785943031311 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6497091 |
| concepts[3].display_name | Lattice (music) |
| concepts[4].id | https://openalex.org/C81363708 |
| concepts[4].level | 2 |
| concepts[4].score | 0.43906140327453613 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[4].display_name | Convolutional neural network |
| concepts[5].id | https://openalex.org/C16345878 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42528143525123596 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q107472979 |
| concepts[5].display_name | Orientation (vector space) |
| concepts[6].id | https://openalex.org/C128765274 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41746050119400024 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q663314 |
| concepts[6].display_name | Hexagonal crystal system |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33806753158569336 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C169760540 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2929436266422272 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[8].display_name | Neuroscience |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.14856505393981934 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.14785641431808472 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.1454888880252838 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C3018011982 |
| concepts[12].level | 2 |
| concepts[12].score | 0.14518257975578308 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7316120 |
| concepts[12].display_name | Functional connectivity |
| concepts[13].id | https://openalex.org/C8010536 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q160398 |
| concepts[13].display_name | Crystallography |
| concepts[14].id | https://openalex.org/C24890656 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[14].display_name | Acoustics |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C185592680 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[16].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/connectome |
| keywords[0].score | 0.8866438269615173 |
| keywords[0].display_name | Connectome |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6917200684547424 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.503415048122406 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/lattice |
| keywords[3].score | 0.4704785943031311 |
| keywords[3].display_name | Lattice (music) |
| keywords[4].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[4].score | 0.43906140327453613 |
| keywords[4].display_name | Convolutional neural network |
| keywords[5].id | https://openalex.org/keywords/orientation |
| keywords[5].score | 0.42528143525123596 |
| keywords[5].display_name | Orientation (vector space) |
| keywords[6].id | https://openalex.org/keywords/hexagonal-crystal-system |
| keywords[6].score | 0.41746050119400024 |
| keywords[6].display_name | Hexagonal crystal system |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.33806753158569336 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/neuroscience |
| keywords[8].score | 0.2929436266422272 |
| keywords[8].display_name | Neuroscience |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.14856505393981934 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/physics |
| keywords[10].score | 0.14785641431808472 |
| keywords[10].display_name | Physics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.1454888880252838 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/functional-connectivity |
| keywords[12].score | 0.14518257975578308 |
| keywords[12].display_name | Functional connectivity |
| language | |
| locations[0].id | pmh:oai:arXiv.org:1806.04793 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1806.04793 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1806.04793 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5025663030 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9210-3426 |
| authorships[0].author.display_name | Fabian Tschopp |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Tschopp, Fabian David |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5052264625 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4108-4517 |
| authorships[1].author.display_name | Michael B. Reiser |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Reiser, Michael B. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5066189518 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3247-6487 |
| authorships[2].author.display_name | Srinivas C. Turaga |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Turaga, Srinivas C. |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1806.04793 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-10-05T00:00:00 |
| display_name | A Connectome Based Hexagonal Lattice Convolutional Network Model of the\n Drosophila Visual System |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10423 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9980999827384949 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2804 |
| primary_topic.subfield.display_name | Cellular and Molecular Neuroscience |
| primary_topic.display_name | Neurobiology and Insect Physiology Research |
| related_works | https://openalex.org/W2043847720, https://openalex.org/W4312963348, https://openalex.org/W3019511099, https://openalex.org/W3048234683, https://openalex.org/W2962960039, https://openalex.org/W3180551345, https://openalex.org/W1744057168, https://openalex.org/W4287102215, https://openalex.org/W4380291026, https://openalex.org/W2286126108 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:1806.04793 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1806.04793 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1806.04793 |
| primary_location.id | pmh:oai:arXiv.org:1806.04793 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1806.04793 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1806.04793 |
| publication_date | 2018-06-12 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 5, 9, 89 |
| abstract_inverted_index.T4 | 56 |
| abstract_inverted_index.We | 7 |
| abstract_inverted_index.an | 93 |
| abstract_inverted_index.at | 64 |
| abstract_inverted_index.in | 39, 55, 79, 88 |
| abstract_inverted_index.is | 69 |
| abstract_inverted_index.of | 12, 16, 75, 82, 86, 95 |
| abstract_inverted_index.to | 35, 92 |
| abstract_inverted_index.we | 2 |
| abstract_inverted_index.Our | 67 |
| abstract_inverted_index.and | 23, 52, 58 |
| abstract_inverted_index.can | 1 |
| abstract_inverted_index.fly | 18 |
| abstract_inverted_index.the | 17, 21, 70, 76, 83 |
| abstract_inverted_index.two | 14 |
| abstract_inverted_index.was | 30 |
| abstract_inverted_index.What | 0 |
| abstract_inverted_index.from | 4, 46 |
| abstract_inverted_index.not. | 66 |
| abstract_inverted_index.that | 73 |
| abstract_inverted_index.time | 34 |
| abstract_inverted_index.with | 44 |
| abstract_inverted_index.work | 68 |
| abstract_inverted_index.first | 71 |
| abstract_inverted_index.learn | 3 |
| abstract_inverted_index.model | 11 |
| abstract_inverted_index.their | 59 |
| abstract_inverted_index.while | 61 |
| abstract_inverted_index.enable | 78 |
| abstract_inverted_index.lamina | 22 |
| abstract_inverted_index.object | 37 |
| abstract_inverted_index.silico | 80 |
| abstract_inverted_index.stages | 15 |
| abstract_inverted_index.visual | 19 |
| abstract_inverted_index.circuit | 96 |
| abstract_inverted_index.inputs, | 60 |
| abstract_inverted_index.lattice | 27 |
| abstract_inverted_index.leading | 91 |
| abstract_inverted_index.natural | 40 |
| abstract_inverted_index.network | 29 |
| abstract_inverted_index.neurons | 57 |
| abstract_inverted_index.perform | 36 |
| abstract_inverted_index.system, | 20 |
| abstract_inverted_index.through | 33 |
| abstract_inverted_index.trained | 31 |
| abstract_inverted_index.weights | 45 |
| abstract_inverted_index.Networks | 42 |
| abstract_inverted_index.alone.\n | 99 |
| abstract_inverted_index.circuit, | 90 |
| abstract_inverted_index.function | 97 |
| abstract_inverted_index.medulla. | 24 |
| abstract_inverted_index.networks | 62 |
| abstract_inverted_index.tracking | 38 |
| abstract_inverted_index.direction | 53 |
| abstract_inverted_index.hexagonal | 26 |
| abstract_inverted_index.knowledge | 74 |
| abstract_inverted_index.connectome | 47 |
| abstract_inverted_index.discovered | 49 |
| abstract_inverted_index.functional | 84 |
| abstract_inverted_index.properties | 85 |
| abstract_inverted_index.simplified | 10 |
| abstract_inverted_index.the\nfirst | 13 |
| abstract_inverted_index.well-known | 50 |
| abstract_inverted_index.connectome? | 6 |
| abstract_inverted_index.constructed | 8 |
| abstract_inverted_index.initialized | 43, 63 |
| abstract_inverted_index.orientation | 51 |
| abstract_inverted_index.predictions | 81 |
| abstract_inverted_index.random\ndid | 65 |
| abstract_inverted_index.convolutional | 28 |
| abstract_inverted_index.understanding | 94 |
| abstract_inverted_index.The\nresulting | 25 |
| abstract_inverted_index.demonstration, | 72 |
| abstract_inverted_index.scene\nvideos. | 41 |
| abstract_inverted_index.connectome\ncan | 77 |
| abstract_inverted_index.from\nstructure | 98 |
| abstract_inverted_index.individual\nneurons | 87 |
| abstract_inverted_index.using\nbackpropagation | 32 |
| abstract_inverted_index.selectivity\nproperties | 54 |
| abstract_inverted_index.reconstructions\nautomatically | 48 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.67852967 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |