A Construction Method for Personalized Movie Recommendation System Based on Embedding Article Swipe
Personalized recommendation systems are essential for enhancing user experience and platform profitability. This study presents a deep learning-based movie recommendation model employing embedding techniques, trained on the MovieLens-25M dataset. Unlike traditional collaborative filtering methods, the proposed system maps users and movies into a low-dimensional latent space, capturing complex nonlinear interactions through a multi-layer perceptron. To address data sparsity and cold-start limitations, negative sampling and a leave-one-out evaluation strategy were implemented. Experimental results demonstrate strong performance, achieving a Hit Ratio @10 of 0.85, thereby validating the effectiveness of embeddings in capturing user preferences. While the model shows robust recommendation quality, it is constrained by the lack of multimodal data and temporal modeling. Future work will explore Transformer architectures, large language models, and multimodal integration to enhance personalization, interpretability, and adaptability in dynamic environments.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.54254/2755-2721/2025.ld27259
- https://www.ewadirect.com/proceedings/ace/article/view/27259/pdf
- OA Status
- hybrid
- OpenAlex ID
- https://openalex.org/W4414723515
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414723515Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.54254/2755-2721/2025.ld27259Digital Object Identifier
- Title
-
A Construction Method for Personalized Movie Recommendation System Based on EmbeddingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-01Full publication date if available
- Authors
-
Wen ZengList of authors in order
- Landing page
-
https://doi.org/10.54254/2755-2721/2025.ld27259Publisher landing page
- PDF URL
-
https://www.ewadirect.com/proceedings/ace/article/view/27259/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://www.ewadirect.com/proceedings/ace/article/view/27259/pdfDirect OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414723515 |
|---|---|
| doi | https://doi.org/10.54254/2755-2721/2025.ld27259 |
| ids.doi | https://doi.org/10.54254/2755-2721/2025.ld27259 |
| ids.openalex | https://openalex.org/W4414723515 |
| fwci | 0.0 |
| type | article |
| title | A Construction Method for Personalized Movie Recommendation System Based on Embedding |
| biblio.issue | 1 |
| biblio.volume | 184 |
| biblio.last_page | 122 |
| biblio.first_page | 116 |
| topics[0].id | https://openalex.org/T14484 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.8822000026702881 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Technology and Data Analysis |
| topics[1].id | https://openalex.org/T14139 |
| topics[1].field.id | https://openalex.org/fields/14 |
| topics[1].field.display_name | Business, Management and Accounting |
| topics[1].score | 0.8224999904632568 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1403 |
| topics[1].subfield.display_name | Business and International Management |
| topics[1].display_name | E-commerce and Technology Innovations |
| topics[2].id | https://openalex.org/T14280 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.7745000123977661 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1802 |
| topics[2].subfield.display_name | Information Systems and Management |
| topics[2].display_name | Big Data Technologies and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.54254/2755-2721/2025.ld27259 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4387281889 |
| locations[0].source.issn | 2755-2721, 2755-273X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2755-2721 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Applied and Computational Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/27259/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied and Computational Engineering |
| locations[0].landing_page_url | https://doi.org/10.54254/2755-2721/2025.ld27259 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5042875971 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4556-5534 |
| authorships[0].author.display_name | Wen Zeng |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I187400657 |
| authorships[0].affiliations[0].raw_affiliation_string | South China Normal University, No. 55 Xiangjiang Avenue West, Shanwei City, Guangdong Province, China |
| authorships[0].institutions[0].id | https://openalex.org/I187400657 |
| authorships[0].institutions[0].ror | https://ror.org/01kq0pv72 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I187400657 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | South China Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenwei Zeng |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | South China Normal University, No. 55 Xiangjiang Avenue West, Shanwei City, Guangdong Province, China |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ewadirect.com/proceedings/ace/article/view/27259/pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Construction Method for Personalized Movie Recommendation System Based on Embedding |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14484 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.8822000026702881 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Technology and Data Analysis |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.54254/2755-2721/2025.ld27259 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4387281889 |
| best_oa_location.source.issn | 2755-2721, 2755-273X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2755-2721 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Applied and Computational Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/27259/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied and Computational Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.54254/2755-2721/2025.ld27259 |
| primary_location.id | doi:10.54254/2755-2721/2025.ld27259 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4387281889 |
| primary_location.source.issn | 2755-2721, 2755-273X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2755-2721 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Applied and Computational Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.ewadirect.com/proceedings/ace/article/view/27259/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied and Computational Engineering |
| primary_location.landing_page_url | https://doi.org/10.54254/2755-2721/2025.ld27259 |
| publication_date | 2025-10-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 15, 42, 51, 64, 76 |
| abstract_inverted_index.To | 54 |
| abstract_inverted_index.by | 102 |
| abstract_inverted_index.in | 88, 129 |
| abstract_inverted_index.is | 100 |
| abstract_inverted_index.it | 99 |
| abstract_inverted_index.of | 80, 86, 105 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.to | 123 |
| abstract_inverted_index.@10 | 79 |
| abstract_inverted_index.Hit | 77 |
| abstract_inverted_index.and | 9, 39, 58, 63, 108, 120, 127 |
| abstract_inverted_index.are | 3 |
| abstract_inverted_index.for | 5 |
| abstract_inverted_index.the | 26, 34, 84, 93, 103 |
| abstract_inverted_index.This | 12 |
| abstract_inverted_index.data | 56, 107 |
| abstract_inverted_index.deep | 16 |
| abstract_inverted_index.into | 41 |
| abstract_inverted_index.lack | 104 |
| abstract_inverted_index.maps | 37 |
| abstract_inverted_index.user | 7, 90 |
| abstract_inverted_index.were | 68 |
| abstract_inverted_index.will | 113 |
| abstract_inverted_index.work | 112 |
| abstract_inverted_index.0.85, | 81 |
| abstract_inverted_index.Ratio | 78 |
| abstract_inverted_index.While | 92 |
| abstract_inverted_index.large | 117 |
| abstract_inverted_index.model | 20, 94 |
| abstract_inverted_index.movie | 18 |
| abstract_inverted_index.shows | 95 |
| abstract_inverted_index.study | 13 |
| abstract_inverted_index.users | 38 |
| abstract_inverted_index.Future | 111 |
| abstract_inverted_index.Unlike | 29 |
| abstract_inverted_index.latent | 44 |
| abstract_inverted_index.movies | 40 |
| abstract_inverted_index.robust | 96 |
| abstract_inverted_index.space, | 45 |
| abstract_inverted_index.strong | 73 |
| abstract_inverted_index.system | 36 |
| abstract_inverted_index.address | 55 |
| abstract_inverted_index.complex | 47 |
| abstract_inverted_index.dynamic | 130 |
| abstract_inverted_index.enhance | 124 |
| abstract_inverted_index.explore | 114 |
| abstract_inverted_index.models, | 119 |
| abstract_inverted_index.results | 71 |
| abstract_inverted_index.systems | 2 |
| abstract_inverted_index.thereby | 82 |
| abstract_inverted_index.through | 50 |
| abstract_inverted_index.trained | 24 |
| abstract_inverted_index.dataset. | 28 |
| abstract_inverted_index.language | 118 |
| abstract_inverted_index.methods, | 33 |
| abstract_inverted_index.negative | 61 |
| abstract_inverted_index.platform | 10 |
| abstract_inverted_index.presents | 14 |
| abstract_inverted_index.proposed | 35 |
| abstract_inverted_index.quality, | 98 |
| abstract_inverted_index.sampling | 62 |
| abstract_inverted_index.sparsity | 57 |
| abstract_inverted_index.strategy | 67 |
| abstract_inverted_index.temporal | 109 |
| abstract_inverted_index.achieving | 75 |
| abstract_inverted_index.capturing | 46, 89 |
| abstract_inverted_index.embedding | 22 |
| abstract_inverted_index.employing | 21 |
| abstract_inverted_index.enhancing | 6 |
| abstract_inverted_index.essential | 4 |
| abstract_inverted_index.filtering | 32 |
| abstract_inverted_index.modeling. | 110 |
| abstract_inverted_index.nonlinear | 48 |
| abstract_inverted_index.cold-start | 59 |
| abstract_inverted_index.embeddings | 87 |
| abstract_inverted_index.evaluation | 66 |
| abstract_inverted_index.experience | 8 |
| abstract_inverted_index.multimodal | 106, 121 |
| abstract_inverted_index.validating | 83 |
| abstract_inverted_index.Transformer | 115 |
| abstract_inverted_index.constrained | 101 |
| abstract_inverted_index.demonstrate | 72 |
| abstract_inverted_index.integration | 122 |
| abstract_inverted_index.multi-layer | 52 |
| abstract_inverted_index.perceptron. | 53 |
| abstract_inverted_index.techniques, | 23 |
| abstract_inverted_index.traditional | 30 |
| abstract_inverted_index.Experimental | 70 |
| abstract_inverted_index.Personalized | 0 |
| abstract_inverted_index.adaptability | 128 |
| abstract_inverted_index.implemented. | 69 |
| abstract_inverted_index.interactions | 49 |
| abstract_inverted_index.limitations, | 60 |
| abstract_inverted_index.performance, | 74 |
| abstract_inverted_index.preferences. | 91 |
| abstract_inverted_index.MovieLens-25M | 27 |
| abstract_inverted_index.collaborative | 31 |
| abstract_inverted_index.effectiveness | 85 |
| abstract_inverted_index.environments. | 131 |
| abstract_inverted_index.leave-one-out | 65 |
| abstract_inverted_index.architectures, | 116 |
| abstract_inverted_index.learning-based | 17 |
| abstract_inverted_index.profitability. | 11 |
| abstract_inverted_index.recommendation | 1, 19, 97 |
| abstract_inverted_index.low-dimensional | 43 |
| abstract_inverted_index.personalization, | 125 |
| abstract_inverted_index.interpretability, | 126 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5042875971 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I187400657 |
| citation_normalized_percentile.value | 0.59064082 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |