A cost-effective machine learning-based method for preeclampsia risk assessment and driver genes discovery Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1186/s13578-023-00991-y
Background The placenta, as a unique exchange organ between mother and fetus, is essential for successful human pregnancy and fetal health. Preeclampsia (PE) caused by placental dysfunction contributes to both maternal and infant morbidity and mortality. Accurate identification of PE patients plays a vital role in the formulation of treatment plans. However, the traditional clinical methods of PE have a high misdiagnosis rate. Results Here, we first designed a computational biology method that used single-cell transcriptome (scRNA-seq) of healthy pregnancy (38 wk) and early-onset PE (28–32 wk) to identify pathological cell subpopulations and predict PE risk. Based on machine learning methods and feature selection techniques, we observed that the Tuning ReliefF (TURF) score hybrid with XGBoost (TURF_XGB) achieved optimal performance, with 92.61% accuracy and 92.46% recall for classifying nine cell subpopulations of healthy placentas. Biological landscapes of placenta heterogeneity could be mapped by the 110 marker genes screened by TURF_XGB, which revealed the superiority of the TURF feature mining. Moreover, we processed the PE dataset with LASSO to obtain 497 biomarkers. Integration analysis of the above two gene sets revealed that dendritic cells were closely associated with early-onset PE, and C1QB and C1QC might drive preeclampsia by mediating inflammation. In addition, an ensemble model-based risk stratification card was developed to classify preeclampsia patients, and its area under the receiver operating characteristic curve (AUC) could reach 0.99. For broader accessibility, we designed an accessible online web server ( http://bioinfor.imu.edu.cn/placenta ). Conclusion Single-cell transcriptome-based preeclampsia risk assessment using an ensemble machine learning framework is a valuable asset for clinical decision-making. C1QB and C1QC may be involved in the development and progression of early-onset PE by affecting the complement and coagulation cascades pathway that mediate inflammation, which has important implications for better understanding the pathogenesis of PE.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1186/s13578-023-00991-y
- https://cellandbioscience.biomedcentral.com/counter/pdf/10.1186/s13578-023-00991-y
- OA Status
- gold
- Cited By
- 46
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4322616457
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4322616457Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1186/s13578-023-00991-yDigital Object Identifier
- Title
-
A cost-effective machine learning-based method for preeclampsia risk assessment and driver genes discoveryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-28Full publication date if available
- Authors
-
Hao Wang, Zhao‐Yue Zhang, Haicheng Li, Jinzhao Li, Hanshuang Li, Mingzhu Liu, Pengfei Liang, Qilemuge Xi, Yongqiang Xing, Lei Yang, Yongchun ZuoList of authors in order
- Landing page
-
https://doi.org/10.1186/s13578-023-00991-yPublisher landing page
- PDF URL
-
https://cellandbioscience.biomedcentral.com/counter/pdf/10.1186/s13578-023-00991-yDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://cellandbioscience.biomedcentral.com/counter/pdf/10.1186/s13578-023-00991-yDirect OA link when available
- Concepts
-
Preeclampsia, Transcriptome, Placenta, Pregnancy, Bioinformatics, Receiver operating characteristic, Computational biology, Fetus, Biology, Machine learning, Artificial intelligence, Medicine, Computer science, Gene, Genetics, Gene expressionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
46Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18, 2024: 19, 2023: 8Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4322616457 |
|---|---|
| doi | https://doi.org/10.1186/s13578-023-00991-y |
| ids.doi | https://doi.org/10.1186/s13578-023-00991-y |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/36849879 |
| ids.openalex | https://openalex.org/W4322616457 |
| fwci | 24.43574968 |
| type | article |
| title | A cost-effective machine learning-based method for preeclampsia risk assessment and driver genes discovery |
| biblio.issue | 1 |
| biblio.volume | 13 |
| biblio.last_page | 41 |
| biblio.first_page | 41 |
| grants[0].funder | https://openalex.org/F4320321001 |
| grants[0].award_id | 61861036 |
| grants[0].funder_display_name | National Natural Science Foundation of China |
| grants[1].funder | https://openalex.org/F4320321001 |
| grants[1].award_id | 62161039 |
| grants[1].funder_display_name | National Natural Science Foundation of China |
| grants[2].funder | https://openalex.org/F4320321001 |
| grants[2].award_id | 62171241 |
| grants[2].funder_display_name | National Natural Science Foundation of China |
| topics[0].id | https://openalex.org/T10290 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2729 |
| topics[0].subfield.display_name | Obstetrics and Gynecology |
| topics[0].display_name | Pregnancy and preeclampsia studies |
| topics[1].id | https://openalex.org/T11510 |
| topics[1].field.id | https://openalex.org/fields/24 |
| topics[1].field.display_name | Immunology and Microbiology |
| topics[1].score | 0.9966999888420105 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2403 |
| topics[1].subfield.display_name | Immunology |
| topics[1].display_name | Reproductive System and Pregnancy |
| topics[2].id | https://openalex.org/T11629 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9853000044822693 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2735 |
| topics[2].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[2].display_name | Birth, Development, and Health |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1570 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1925 |
| apc_paid.value | 1570 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1925 |
| concepts[0].id | https://openalex.org/C2777218350 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7015685439109802 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q61335 |
| concepts[0].display_name | Preeclampsia |
| concepts[1].id | https://openalex.org/C162317418 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6117290258407593 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q252857 |
| concepts[1].display_name | Transcriptome |
| concepts[2].id | https://openalex.org/C2776953305 |
| concepts[2].level | 4 |
| concepts[2].score | 0.5174187421798706 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1212935 |
| concepts[2].display_name | Placenta |
| concepts[3].id | https://openalex.org/C2779234561 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5067325234413147 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11995 |
| concepts[3].display_name | Pregnancy |
| concepts[4].id | https://openalex.org/C60644358 |
| concepts[4].level | 1 |
| concepts[4].score | 0.48478955030441284 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q128570 |
| concepts[4].display_name | Bioinformatics |
| concepts[5].id | https://openalex.org/C58471807 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4524766206741333 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q327120 |
| concepts[5].display_name | Receiver operating characteristic |
| concepts[6].id | https://openalex.org/C70721500 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43252986669540405 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[6].display_name | Computational biology |
| concepts[7].id | https://openalex.org/C172680121 |
| concepts[7].level | 3 |
| concepts[7].score | 0.40372365713119507 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q26513 |
| concepts[7].display_name | Fetus |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4029057025909424 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.38620445132255554 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3824484348297119 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.37017250061035156 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3532955050468445 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C104317684 |
| concepts[13].level | 2 |
| concepts[13].score | 0.27221325039863586 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[13].display_name | Gene |
| concepts[14].id | https://openalex.org/C54355233 |
| concepts[14].level | 1 |
| concepts[14].score | 0.14461985230445862 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[14].display_name | Genetics |
| concepts[15].id | https://openalex.org/C150194340 |
| concepts[15].level | 3 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q26972 |
| concepts[15].display_name | Gene expression |
| keywords[0].id | https://openalex.org/keywords/preeclampsia |
| keywords[0].score | 0.7015685439109802 |
| keywords[0].display_name | Preeclampsia |
| keywords[1].id | https://openalex.org/keywords/transcriptome |
| keywords[1].score | 0.6117290258407593 |
| keywords[1].display_name | Transcriptome |
| keywords[2].id | https://openalex.org/keywords/placenta |
| keywords[2].score | 0.5174187421798706 |
| keywords[2].display_name | Placenta |
| keywords[3].id | https://openalex.org/keywords/pregnancy |
| keywords[3].score | 0.5067325234413147 |
| keywords[3].display_name | Pregnancy |
| keywords[4].id | https://openalex.org/keywords/bioinformatics |
| keywords[4].score | 0.48478955030441284 |
| keywords[4].display_name | Bioinformatics |
| keywords[5].id | https://openalex.org/keywords/receiver-operating-characteristic |
| keywords[5].score | 0.4524766206741333 |
| keywords[5].display_name | Receiver operating characteristic |
| keywords[6].id | https://openalex.org/keywords/computational-biology |
| keywords[6].score | 0.43252986669540405 |
| keywords[6].display_name | Computational biology |
| keywords[7].id | https://openalex.org/keywords/fetus |
| keywords[7].score | 0.40372365713119507 |
| keywords[7].display_name | Fetus |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.4029057025909424 |
| keywords[8].display_name | Biology |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.38620445132255554 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3824484348297119 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.37017250061035156 |
| keywords[11].display_name | Medicine |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.3532955050468445 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/gene |
| keywords[13].score | 0.27221325039863586 |
| keywords[13].display_name | Gene |
| keywords[14].id | https://openalex.org/keywords/genetics |
| keywords[14].score | 0.14461985230445862 |
| keywords[14].display_name | Genetics |
| language | en |
| locations[0].id | doi:10.1186/s13578-023-00991-y |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S14303005 |
| locations[0].source.issn | 2045-3701 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-3701 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Cell & Bioscience |
| locations[0].source.host_organization | https://openalex.org/P4310320256 |
| locations[0].source.host_organization_name | BioMed Central |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320256 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://cellandbioscience.biomedcentral.com/counter/pdf/10.1186/s13578-023-00991-y |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Cell & Bioscience |
| locations[0].landing_page_url | https://doi.org/10.1186/s13578-023-00991-y |
| locations[1].id | pmid:36849879 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Cell & bioscience |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/36849879 |
| locations[2].id | pmh:oai:doaj.org/article:9fd8875ccd7c4242ab63d811ed0ad5f6 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Cell & Bioscience, Vol 13, Iss 1, Pp 1-12 (2023) |
| locations[2].landing_page_url | https://doaj.org/article/9fd8875ccd7c4242ab63d811ed0ad5f6 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:9972636 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Cell Biosci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9972636 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100663370 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8557-7751 |
| authorships[0].author.display_name | Hao Wang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[0].affiliations[0].raw_affiliation_string | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[0].institutions[0].id | https://openalex.org/I2722730 |
| authorships[0].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Inner Mongolia University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hao Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[1].author.id | https://openalex.org/A5073409235 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4619-247X |
| authorships[1].author.display_name | Zhao‐Yue Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I150229711 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China |
| authorships[1].institutions[0].id | https://openalex.org/I150229711 |
| authorships[1].institutions[0].ror | https://ror.org/04qr3zq92 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I150229711 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Electronic Science and Technology of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhaoyue Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China |
| authorships[2].author.id | https://openalex.org/A5012399528 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7268-6967 |
| authorships[2].author.display_name | Haicheng Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[2].affiliations[0].raw_affiliation_string | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[2].institutions[0].id | https://openalex.org/I2722730 |
| authorships[2].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Inner Mongolia University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haicheng Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[3].author.id | https://openalex.org/A5101763968 |
| authorships[3].author.orcid | https://orcid.org/0009-0005-3700-5483 |
| authorships[3].author.display_name | Jinzhao Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[3].affiliations[0].raw_affiliation_string | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[3].institutions[0].id | https://openalex.org/I2722730 |
| authorships[3].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Inner Mongolia University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jinzhao Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[4].author.id | https://openalex.org/A5062770273 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5068-4311 |
| authorships[4].author.display_name | Hanshuang Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[4].affiliations[0].raw_affiliation_string | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[4].institutions[0].id | https://openalex.org/I2722730 |
| authorships[4].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Inner Mongolia University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hanshuang Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[5].author.id | https://openalex.org/A5100704354 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Mingzhu Liu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[5].affiliations[0].raw_affiliation_string | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[5].institutions[0].id | https://openalex.org/I2722730 |
| authorships[5].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Inner Mongolia University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mingzhu Liu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[6].author.id | https://openalex.org/A5101856804 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9541-9485 |
| authorships[6].author.display_name | Pengfei Liang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[6].affiliations[0].raw_affiliation_string | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[6].institutions[0].id | https://openalex.org/I2722730 |
| authorships[6].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Inner Mongolia University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Pengfei Liang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[7].author.id | https://openalex.org/A5071202132 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Qilemuge Xi |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I2722730 |
| authorships[7].affiliations[0].raw_affiliation_string | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[7].institutions[0].id | https://openalex.org/I2722730 |
| authorships[7].institutions[0].ror | https://ror.org/0106qb496 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I2722730 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Inner Mongolia University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Qilemuge Xi |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China |
| authorships[8].author.id | https://openalex.org/A5101018628 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-6987-7327 |
| authorships[8].author.display_name | Yongqiang Xing |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I31637741 |
| authorships[8].affiliations[0].raw_affiliation_string | School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China |
| authorships[8].institutions[0].id | https://openalex.org/I31637741 |
| authorships[8].institutions[0].ror | https://ror.org/044rgx723 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I31637741 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Inner Mongolia University of Science and Technology |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Yongqiang Xing |
| authorships[8].is_corresponding | True |
| authorships[8].raw_affiliation_strings | School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, 014010, China |
| authorships[9].author.id | https://openalex.org/A5057225835 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-1133-9099 |
| authorships[9].author.display_name | Lei Yang |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I156144747 |
| authorships[9].affiliations[0].raw_affiliation_string | College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China |
| authorships[9].institutions[0].id | https://openalex.org/I156144747 |
| authorships[9].institutions[0].ror | https://ror.org/05jscf583 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I156144747 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Harbin Medical University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Lei Yang |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China |
| authorships[10].author.id | https://openalex.org/A5001300435 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-6065-7835 |
| authorships[10].author.display_name | Yongchun Zuo |
| authorships[10].affiliations[0].raw_affiliation_string | Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mongolia Wesure Date Technology Co., Ltd., Hohhot, 010010, China |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Yongchun Zuo |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Digital College, Inner Mongolia Intelligent Union Big Data Academy, Inner Mongolia Wesure Date Technology Co., Ltd., Hohhot, 010010, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://cellandbioscience.biomedcentral.com/counter/pdf/10.1186/s13578-023-00991-y |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A cost-effective machine learning-based method for preeclampsia risk assessment and driver genes discovery |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10290 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2729 |
| primary_topic.subfield.display_name | Obstetrics and Gynecology |
| primary_topic.display_name | Pregnancy and preeclampsia studies |
| related_works | https://openalex.org/W1520675682, https://openalex.org/W2167244209, https://openalex.org/W2411259789, https://openalex.org/W2399513595, https://openalex.org/W2090583597, https://openalex.org/W2389974487, https://openalex.org/W2412883775, https://openalex.org/W2364920504, https://openalex.org/W271579791, https://openalex.org/W4296025728 |
| cited_by_count | 46 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 19 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 8 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1186/s13578-023-00991-y |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S14303005 |
| best_oa_location.source.issn | 2045-3701 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-3701 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Cell & Bioscience |
| best_oa_location.source.host_organization | https://openalex.org/P4310320256 |
| best_oa_location.source.host_organization_name | BioMed Central |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320256 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://cellandbioscience.biomedcentral.com/counter/pdf/10.1186/s13578-023-00991-y |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Cell & Bioscience |
| best_oa_location.landing_page_url | https://doi.org/10.1186/s13578-023-00991-y |
| primary_location.id | doi:10.1186/s13578-023-00991-y |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S14303005 |
| primary_location.source.issn | 2045-3701 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-3701 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Cell & Bioscience |
| primary_location.source.host_organization | https://openalex.org/P4310320256 |
| primary_location.source.host_organization_name | BioMed Central |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320256 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://cellandbioscience.biomedcentral.com/counter/pdf/10.1186/s13578-023-00991-y |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Cell & Bioscience |
| primary_location.landing_page_url | https://doi.org/10.1186/s13578-023-00991-y |
| publication_date | 2023-02-28 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2990237704, https://openalex.org/W3046267976, https://openalex.org/W2962388486, https://openalex.org/W2935104625, https://openalex.org/W2916697167, https://openalex.org/W2059176552, https://openalex.org/W2749281307, https://openalex.org/W2900144939, https://openalex.org/W4205637893, https://openalex.org/W2883778176, https://openalex.org/W4210865385, https://openalex.org/W4205590923, https://openalex.org/W2805423673, https://openalex.org/W2513786151, https://openalex.org/W3038319509, https://openalex.org/W3025948831, https://openalex.org/W2117825844, https://openalex.org/W2119501676, https://openalex.org/W3127064341, https://openalex.org/W3112889838, https://openalex.org/W3200707343, https://openalex.org/W2907803369, https://openalex.org/W2093586154, https://openalex.org/W3197209004, https://openalex.org/W1988071850, https://openalex.org/W1948456143, https://openalex.org/W2950372712, https://openalex.org/W3047141442, https://openalex.org/W2114017759, https://openalex.org/W2161922332, https://openalex.org/W2057481143, https://openalex.org/W2035483520, https://openalex.org/W3128095006, https://openalex.org/W1607429617, https://openalex.org/W3146999786, https://openalex.org/W4307405391, https://openalex.org/W2411066114, https://openalex.org/W3004576526, https://openalex.org/W3037978450, https://openalex.org/W3164115955, https://openalex.org/W2898759023, https://openalex.org/W2804462245, https://openalex.org/W2169456326, https://openalex.org/W2147710851, https://openalex.org/W6631801019, https://openalex.org/W3041701644, https://openalex.org/W4289883804, https://openalex.org/W3164168679, https://openalex.org/W3046294478, https://openalex.org/W3041089282, https://openalex.org/W3021929556, https://openalex.org/W3054359650, https://openalex.org/W4207005175, https://openalex.org/W1532551225 |
| referenced_works_count | 54 |
| abstract_inverted_index.( | 237 |
| abstract_inverted_index.a | 5, 43, 60, 69, 253 |
| abstract_inverted_index.). | 239 |
| abstract_inverted_index.In | 200 |
| abstract_inverted_index.PE | 40, 58, 85, 95, 164, 272 |
| abstract_inverted_index.an | 202, 232, 247 |
| abstract_inverted_index.as | 4 |
| abstract_inverted_index.be | 141, 263 |
| abstract_inverted_index.by | 25, 143, 149, 197, 273 |
| abstract_inverted_index.in | 46, 265 |
| abstract_inverted_index.is | 13, 252 |
| abstract_inverted_index.of | 39, 49, 57, 78, 132, 137, 155, 174, 270, 293 |
| abstract_inverted_index.on | 98 |
| abstract_inverted_index.to | 29, 88, 168, 210 |
| abstract_inverted_index.we | 66, 106, 161, 230 |
| abstract_inverted_index.(38 | 81 |
| abstract_inverted_index.110 | 145 |
| abstract_inverted_index.497 | 170 |
| abstract_inverted_index.For | 227 |
| abstract_inverted_index.PE, | 189 |
| abstract_inverted_index.PE. | 294 |
| abstract_inverted_index.The | 2 |
| abstract_inverted_index.and | 11, 19, 32, 35, 83, 93, 102, 124, 190, 192, 214, 260, 268, 277 |
| abstract_inverted_index.for | 15, 127, 256, 288 |
| abstract_inverted_index.has | 285 |
| abstract_inverted_index.its | 215 |
| abstract_inverted_index.may | 262 |
| abstract_inverted_index.the | 47, 53, 109, 144, 153, 156, 163, 175, 218, 266, 275, 291 |
| abstract_inverted_index.two | 177 |
| abstract_inverted_index.was | 208 |
| abstract_inverted_index.web | 235 |
| abstract_inverted_index.wk) | 82, 87 |
| abstract_inverted_index.(PE) | 23 |
| abstract_inverted_index.C1QB | 191, 259 |
| abstract_inverted_index.C1QC | 193, 261 |
| abstract_inverted_index.TURF | 157 |
| abstract_inverted_index.area | 216 |
| abstract_inverted_index.both | 30 |
| abstract_inverted_index.card | 207 |
| abstract_inverted_index.cell | 91, 130 |
| abstract_inverted_index.gene | 178 |
| abstract_inverted_index.have | 59 |
| abstract_inverted_index.high | 61 |
| abstract_inverted_index.nine | 129 |
| abstract_inverted_index.risk | 205, 244 |
| abstract_inverted_index.role | 45 |
| abstract_inverted_index.sets | 179 |
| abstract_inverted_index.that | 73, 108, 181, 281 |
| abstract_inverted_index.used | 74 |
| abstract_inverted_index.were | 184 |
| abstract_inverted_index.with | 115, 121, 166, 187 |
| abstract_inverted_index.(AUC) | 223 |
| abstract_inverted_index.0.99. | 226 |
| abstract_inverted_index.Based | 97 |
| abstract_inverted_index.Here, | 65 |
| abstract_inverted_index.LASSO | 167 |
| abstract_inverted_index.above | 176 |
| abstract_inverted_index.asset | 255 |
| abstract_inverted_index.cells | 183 |
| abstract_inverted_index.could | 140, 224 |
| abstract_inverted_index.curve | 222 |
| abstract_inverted_index.drive | 195 |
| abstract_inverted_index.fetal | 20 |
| abstract_inverted_index.first | 67 |
| abstract_inverted_index.genes | 147 |
| abstract_inverted_index.human | 17 |
| abstract_inverted_index.might | 194 |
| abstract_inverted_index.organ | 8 |
| abstract_inverted_index.plays | 42 |
| abstract_inverted_index.rate. | 63 |
| abstract_inverted_index.reach | 225 |
| abstract_inverted_index.risk. | 96 |
| abstract_inverted_index.score | 113 |
| abstract_inverted_index.under | 217 |
| abstract_inverted_index.using | 246 |
| abstract_inverted_index.vital | 44 |
| abstract_inverted_index.which | 151, 284 |
| abstract_inverted_index.(TURF) | 112 |
| abstract_inverted_index.92.46% | 125 |
| abstract_inverted_index.92.61% | 122 |
| abstract_inverted_index.Tuning | 110 |
| abstract_inverted_index.better | 289 |
| abstract_inverted_index.caused | 24 |
| abstract_inverted_index.fetus, | 12 |
| abstract_inverted_index.hybrid | 114 |
| abstract_inverted_index.infant | 33 |
| abstract_inverted_index.mapped | 142 |
| abstract_inverted_index.marker | 146 |
| abstract_inverted_index.method | 72 |
| abstract_inverted_index.mother | 10 |
| abstract_inverted_index.obtain | 169 |
| abstract_inverted_index.online | 234 |
| abstract_inverted_index.plans. | 51 |
| abstract_inverted_index.recall | 126 |
| abstract_inverted_index.server | 236 |
| abstract_inverted_index.unique | 6 |
| abstract_inverted_index.ReliefF | 111 |
| abstract_inverted_index.Results | 64 |
| abstract_inverted_index.XGBoost | 116 |
| abstract_inverted_index.between | 9 |
| abstract_inverted_index.biology | 71 |
| abstract_inverted_index.broader | 228 |
| abstract_inverted_index.closely | 185 |
| abstract_inverted_index.dataset | 165 |
| abstract_inverted_index.feature | 103, 158 |
| abstract_inverted_index.health. | 21 |
| abstract_inverted_index.healthy | 79, 133 |
| abstract_inverted_index.machine | 99, 249 |
| abstract_inverted_index.mediate | 282 |
| abstract_inverted_index.methods | 56, 101 |
| abstract_inverted_index.mining. | 159 |
| abstract_inverted_index.optimal | 119 |
| abstract_inverted_index.pathway | 280 |
| abstract_inverted_index.predict | 94 |
| abstract_inverted_index.(28–32 | 86 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Accurate | 37 |
| abstract_inverted_index.However, | 52 |
| abstract_inverted_index.accuracy | 123 |
| abstract_inverted_index.achieved | 118 |
| abstract_inverted_index.analysis | 173 |
| abstract_inverted_index.cascades | 279 |
| abstract_inverted_index.classify | 211 |
| abstract_inverted_index.clinical | 55, 257 |
| abstract_inverted_index.designed | 68, 231 |
| abstract_inverted_index.ensemble | 203, 248 |
| abstract_inverted_index.exchange | 7 |
| abstract_inverted_index.identify | 89 |
| abstract_inverted_index.involved | 264 |
| abstract_inverted_index.learning | 100, 250 |
| abstract_inverted_index.maternal | 31 |
| abstract_inverted_index.observed | 107 |
| abstract_inverted_index.patients | 41 |
| abstract_inverted_index.placenta | 138 |
| abstract_inverted_index.receiver | 219 |
| abstract_inverted_index.revealed | 152, 180 |
| abstract_inverted_index.screened | 148 |
| abstract_inverted_index.valuable | 254 |
| abstract_inverted_index.Moreover, | 160 |
| abstract_inverted_index.TURF_XGB, | 150 |
| abstract_inverted_index.addition, | 201 |
| abstract_inverted_index.affecting | 274 |
| abstract_inverted_index.dendritic | 182 |
| abstract_inverted_index.developed | 209 |
| abstract_inverted_index.essential | 14 |
| abstract_inverted_index.framework | 251 |
| abstract_inverted_index.important | 286 |
| abstract_inverted_index.mediating | 198 |
| abstract_inverted_index.morbidity | 34 |
| abstract_inverted_index.operating | 220 |
| abstract_inverted_index.patients, | 213 |
| abstract_inverted_index.placenta, | 3 |
| abstract_inverted_index.placental | 26 |
| abstract_inverted_index.pregnancy | 18, 80 |
| abstract_inverted_index.processed | 162 |
| abstract_inverted_index.selection | 104 |
| abstract_inverted_index.treatment | 50 |
| abstract_inverted_index.(TURF_XGB) | 117 |
| abstract_inverted_index.Background | 1 |
| abstract_inverted_index.Biological | 135 |
| abstract_inverted_index.Conclusion | 240 |
| abstract_inverted_index.accessible | 233 |
| abstract_inverted_index.assessment | 245 |
| abstract_inverted_index.associated | 186 |
| abstract_inverted_index.complement | 276 |
| abstract_inverted_index.landscapes | 136 |
| abstract_inverted_index.mortality. | 36 |
| abstract_inverted_index.placentas. | 134 |
| abstract_inverted_index.successful | 16 |
| abstract_inverted_index.(scRNA-seq) | 77 |
| abstract_inverted_index.Integration | 172 |
| abstract_inverted_index.Single-cell | 241 |
| abstract_inverted_index.biomarkers. | 171 |
| abstract_inverted_index.classifying | 128 |
| abstract_inverted_index.coagulation | 278 |
| abstract_inverted_index.contributes | 28 |
| abstract_inverted_index.development | 267 |
| abstract_inverted_index.dysfunction | 27 |
| abstract_inverted_index.early-onset | 84, 188, 271 |
| abstract_inverted_index.formulation | 48 |
| abstract_inverted_index.model-based | 204 |
| abstract_inverted_index.progression | 269 |
| abstract_inverted_index.single-cell | 75 |
| abstract_inverted_index.superiority | 154 |
| abstract_inverted_index.techniques, | 105 |
| abstract_inverted_index.traditional | 54 |
| abstract_inverted_index.Preeclampsia | 22 |
| abstract_inverted_index.implications | 287 |
| abstract_inverted_index.misdiagnosis | 62 |
| abstract_inverted_index.pathogenesis | 292 |
| abstract_inverted_index.pathological | 90 |
| abstract_inverted_index.performance, | 120 |
| abstract_inverted_index.preeclampsia | 196, 212, 243 |
| abstract_inverted_index.computational | 70 |
| abstract_inverted_index.heterogeneity | 139 |
| abstract_inverted_index.inflammation, | 283 |
| abstract_inverted_index.inflammation. | 199 |
| abstract_inverted_index.transcriptome | 76 |
| abstract_inverted_index.understanding | 290 |
| abstract_inverted_index.accessibility, | 229 |
| abstract_inverted_index.characteristic | 221 |
| abstract_inverted_index.identification | 38 |
| abstract_inverted_index.stratification | 206 |
| abstract_inverted_index.subpopulations | 92, 131 |
| abstract_inverted_index.decision-making. | 258 |
| abstract_inverted_index.transcriptome-based | 242 |
| abstract_inverted_index.http://bioinfor.imu.edu.cn/placenta | 238 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| corresponding_author_ids | https://openalex.org/A5057225835, https://openalex.org/A5101018628 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 11 |
| corresponding_institution_ids | https://openalex.org/I156144747, https://openalex.org/I31637741 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.99523845 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |