A coupled framework for symbolic turbulence models from deep-learning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.ijheatfluidflow.2023.109140
Improvements in turbulence modelling in the recent years has seen an increasing prominence of various machine-learning algorithms. In this work, two different algorithms: tensor basis neural networks (TBNNs) and gene-expression programming (GEP), are combined to extract interpretable Reynolds stress closures. Representations of the high-fidelity Reynolds stress, obtained from deep-learning, are used to learn symbolic expressions for the stress closures. This is in contrast to the previously developed approaches of using either neural networks or symbolic regression algorithms to close Reynolds stresses from high-fidelity data. The involvement of TBNNs as an intermediate step in developing symbolic expressions stems from their ability to maintain the complex relationships between input features and output fields resulting from multiple datasets of different types of flows, which symbolic regression algorithms currently struggle with. The a priori and a posteriori results show that the closures developed by informing GEP with TBNN predictions produce results with similar accuracy to closures developed with GEP purely from high-fidelity data. Additionally, if the high-fidelity database contains multiple flows with uniquely different features, GEP closures developed from TBNN predictions yield better prediction accuracy than if the high-fidelity database (comprising of the multiple flows) was used to train GEP closures. On the point of interpretability, the closures were also examined for the purposes of complexity reduction as well as understanding which terms were responsible for the improvements seen. These results indicate that there is promise in building complex neural networks comprising a catalogue of wide-ranging flow types, which can then be used to extract symbolic closures on a case-by-case basis, thereby reducing the dependency on high-fidelity data for closure modelling.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.ijheatfluidflow.2023.109140
- OA Status
- hybrid
- Cited By
- 13
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4366762595
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4366762595Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.ijheatfluidflow.2023.109140Digital Object Identifier
- Title
-
A coupled framework for symbolic turbulence models from deep-learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-22Full publication date if available
- Authors
-
Chitrarth Lav, Andrew Banko, Fabian Waschkowski, Yaomin Zhao, Christopher J. Elkins, John K. Eaton, Richard D. SandbergList of authors in order
- Landing page
-
https://doi.org/10.1016/j.ijheatfluidflow.2023.109140Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.ijheatfluidflow.2023.109140Direct OA link when available
- Concepts
-
Interpretability, Computer science, Fidelity, Symbolic regression, A priori and a posteriori, Reynolds stress, Artificial neural network, Gene expression programming, Artificial intelligence, Machine learning, Algorithm, Turbulence, Genetic programming, Philosophy, Epistemology, Telecommunications, Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 7Per-year citation counts (last 5 years)
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4366762595 |
|---|---|
| doi | https://doi.org/10.1016/j.ijheatfluidflow.2023.109140 |
| ids.doi | https://doi.org/10.1016/j.ijheatfluidflow.2023.109140 |
| ids.openalex | https://openalex.org/W4366762595 |
| fwci | 4.36808436 |
| type | article |
| title | A coupled framework for symbolic turbulence models from deep-learning |
| awards[0].id | https://openalex.org/G6272819000 |
| awards[0].funder_id | https://openalex.org/F4320337345 |
| awards[0].display_name | |
| awards[0].funder_award_id | N000141912075 |
| awards[0].funder_display_name | Office of Naval Research |
| biblio.issue | |
| biblio.volume | 101 |
| biblio.last_page | 109140 |
| biblio.first_page | 109140 |
| topics[0].id | https://openalex.org/T10360 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9993000030517578 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | Fluid Dynamics and Turbulent Flows |
| topics[1].id | https://openalex.org/T11206 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Model Reduction and Neural Networks |
| topics[2].id | https://openalex.org/T11254 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9950000047683716 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Fluid Dynamics and Vibration Analysis |
| funders[0].id | https://openalex.org/F4320334704 |
| funders[0].ror | https://ror.org/05mmh0f86 |
| funders[0].display_name | Australian Research Council |
| funders[1].id | https://openalex.org/F4320337345 |
| funders[1].ror | https://ror.org/00rk2pe57 |
| funders[1].display_name | Office of Naval Research |
| is_xpac | False |
| apc_list.value | 3190 |
| apc_list.currency | USD |
| apc_list.value_usd | 3190 |
| apc_paid.value | 3190 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 3190 |
| concepts[0].id | https://openalex.org/C2781067378 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7884654998779297 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17027399 |
| concepts[0].display_name | Interpretability |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6483269929885864 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2776459999 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6285861730575562 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2119376 |
| concepts[2].display_name | Fidelity |
| concepts[3].id | https://openalex.org/C2776400721 |
| concepts[3].level | 3 |
| concepts[3].score | 0.619985044002533 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q18171762 |
| concepts[3].display_name | Symbolic regression |
| concepts[4].id | https://openalex.org/C75553542 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5888658165931702 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q178161 |
| concepts[4].display_name | A priori and a posteriori |
| concepts[5].id | https://openalex.org/C147196274 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5411455035209656 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7319685 |
| concepts[5].display_name | Reynolds stress |
| concepts[6].id | https://openalex.org/C50644808 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5241178274154663 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[6].display_name | Artificial neural network |
| concepts[7].id | https://openalex.org/C6980683 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5231272578239441 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5531551 |
| concepts[7].display_name | Gene expression programming |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.5196601152420044 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.498354434967041 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.39202582836151123 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C196558001 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3113841414451599 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q190132 |
| concepts[11].display_name | Turbulence |
| concepts[12].id | https://openalex.org/C110332635 |
| concepts[12].level | 2 |
| concepts[12].score | 0.2575552761554718 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q629498 |
| concepts[12].display_name | Genetic programming |
| concepts[13].id | https://openalex.org/C138885662 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[13].display_name | Philosophy |
| concepts[14].id | https://openalex.org/C111472728 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[14].display_name | Epistemology |
| concepts[15].id | https://openalex.org/C76155785 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[15].display_name | Telecommunications |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C97355855 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[17].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/interpretability |
| keywords[0].score | 0.7884654998779297 |
| keywords[0].display_name | Interpretability |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6483269929885864 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/fidelity |
| keywords[2].score | 0.6285861730575562 |
| keywords[2].display_name | Fidelity |
| keywords[3].id | https://openalex.org/keywords/symbolic-regression |
| keywords[3].score | 0.619985044002533 |
| keywords[3].display_name | Symbolic regression |
| keywords[4].id | https://openalex.org/keywords/a-priori-and-a-posteriori |
| keywords[4].score | 0.5888658165931702 |
| keywords[4].display_name | A priori and a posteriori |
| keywords[5].id | https://openalex.org/keywords/reynolds-stress |
| keywords[5].score | 0.5411455035209656 |
| keywords[5].display_name | Reynolds stress |
| keywords[6].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[6].score | 0.5241178274154663 |
| keywords[6].display_name | Artificial neural network |
| keywords[7].id | https://openalex.org/keywords/gene-expression-programming |
| keywords[7].score | 0.5231272578239441 |
| keywords[7].display_name | Gene expression programming |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.5196601152420044 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.498354434967041 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.39202582836151123 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/turbulence |
| keywords[11].score | 0.3113841414451599 |
| keywords[11].display_name | Turbulence |
| keywords[12].id | https://openalex.org/keywords/genetic-programming |
| keywords[12].score | 0.2575552761554718 |
| keywords[12].display_name | Genetic programming |
| language | en |
| locations[0].id | doi:10.1016/j.ijheatfluidflow.2023.109140 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S40322869 |
| locations[0].source.issn | 0142-727X, 1879-2278 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0142-727X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Heat and Fluid Flow |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Heat and Fluid Flow |
| locations[0].landing_page_url | https://doi.org/10.1016/j.ijheatfluidflow.2023.109140 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051919799 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2524-8881 |
| authorships[0].author.display_name | Chitrarth Lav |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I165779595 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, University of Melbourne, Australia |
| authorships[0].affiliations[1].raw_affiliation_string | CFD Methodology Group, Scuderia AlphaTauri F1, United Kingdom |
| authorships[0].institutions[0].id | https://openalex.org/I165779595 |
| authorships[0].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | The University of Melbourne |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chitrarth Lav |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | CFD Methodology Group, Scuderia AlphaTauri F1, United Kingdom, Department of Mechanical Engineering, University of Melbourne, Australia |
| authorships[1].author.id | https://openalex.org/A5003664257 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7150-137X |
| authorships[1].author.display_name | Andrew Banko |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I192545095 |
| authorships[1].affiliations[0].raw_affiliation_string | United States Military Academy, Westpoint, United States of America |
| authorships[1].institutions[0].id | https://openalex.org/I192545095 |
| authorships[1].institutions[0].ror | https://ror.org/01jepya76 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1304082316, https://openalex.org/I1330347796, https://openalex.org/I192545095, https://openalex.org/I4210088792 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | United States Military Academy |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Andrew J. Banko |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | United States Military Academy, Westpoint, United States of America |
| authorships[2].author.id | https://openalex.org/A5089615888 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5427-9551 |
| authorships[2].author.display_name | Fabian Waschkowski |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I165779595 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, University of Melbourne, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I165779595 |
| authorships[2].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | The University of Melbourne |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Fabian Waschkowski |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mechanical Engineering, University of Melbourne, Australia |
| authorships[3].author.id | https://openalex.org/A5085224622 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9597-5761 |
| authorships[3].author.display_name | Yaomin Zhao |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[3].affiliations[0].raw_affiliation_string | HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, China |
| authorships[3].institutions[0].id | https://openalex.org/I20231570 |
| authorships[3].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Peking University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yaomin Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, China |
| authorships[4].author.id | https://openalex.org/A5087512336 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2750-022X |
| authorships[4].author.display_name | Christopher J. Elkins |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Stanford University, United States of America |
| authorships[4].institutions[0].id | https://openalex.org/I97018004 |
| authorships[4].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Stanford University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Christopher J. Elkins |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Mechanical Engineering, Stanford University, United States of America |
| authorships[5].author.id | https://openalex.org/A5037668397 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9615-5901 |
| authorships[5].author.display_name | John K. Eaton |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, Stanford University, United States of America |
| authorships[5].institutions[0].id | https://openalex.org/I97018004 |
| authorships[5].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Stanford University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | John K. Eaton |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Mechanical Engineering, Stanford University, United States of America |
| authorships[6].author.id | https://openalex.org/A5021829090 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5199-3944 |
| authorships[6].author.display_name | Richard D. Sandberg |
| authorships[6].countries | AU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I165779595 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, University of Melbourne, Australia |
| authorships[6].institutions[0].id | https://openalex.org/I165779595 |
| authorships[6].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[6].institutions[0].country_code | AU |
| authorships[6].institutions[0].display_name | The University of Melbourne |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Richard D. Sandberg |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Mechanical Engineering, University of Melbourne, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.ijheatfluidflow.2023.109140 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A coupled framework for symbolic turbulence models from deep-learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10360 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9993000030517578 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | Fluid Dynamics and Turbulent Flows |
| related_works | https://openalex.org/W2126117263, https://openalex.org/W2046524609, https://openalex.org/W1971409410, https://openalex.org/W1970505246, https://openalex.org/W2904685404, https://openalex.org/W3091474480, https://openalex.org/W4286469215, https://openalex.org/W3018311371, https://openalex.org/W2009392275, https://openalex.org/W2366725522 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.ijheatfluidflow.2023.109140 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S40322869 |
| best_oa_location.source.issn | 0142-727X, 1879-2278 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0142-727X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Heat and Fluid Flow |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Heat and Fluid Flow |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.ijheatfluidflow.2023.109140 |
| primary_location.id | doi:10.1016/j.ijheatfluidflow.2023.109140 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S40322869 |
| primary_location.source.issn | 0142-727X, 1879-2278 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0142-727X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Heat and Fluid Flow |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Heat and Fluid Flow |
| primary_location.landing_page_url | https://doi.org/10.1016/j.ijheatfluidflow.2023.109140 |
| publication_date | 2023-04-22 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W6754051867, https://openalex.org/W3155710335, https://openalex.org/W1990456272, https://openalex.org/W1985234451, https://openalex.org/W1571139409, https://openalex.org/W4220717841, https://openalex.org/W6772252848, https://openalex.org/W1994699921, https://openalex.org/W6780561946, https://openalex.org/W2969665376, https://openalex.org/W6750470182, https://openalex.org/W2569396193, https://openalex.org/W2008639417, https://openalex.org/W6797765570, https://openalex.org/W3012045275, https://openalex.org/W3082465854, https://openalex.org/W6769874168, https://openalex.org/W2911525369, https://openalex.org/W2534240011, https://openalex.org/W2908791737, https://openalex.org/W6766600521, https://openalex.org/W4239156627, https://openalex.org/W2110418811, https://openalex.org/W2997302418, https://openalex.org/W2889522259, https://openalex.org/W2995408993, https://openalex.org/W6636831568, https://openalex.org/W3016166171, https://openalex.org/W2335524910, https://openalex.org/W2030670821, https://openalex.org/W2594632285, https://openalex.org/W6795057052, https://openalex.org/W2515586274, https://openalex.org/W2766872946, https://openalex.org/W6771267141, https://openalex.org/W4298000118, https://openalex.org/W3013108861, https://openalex.org/W3036548566, https://openalex.org/W3105469151, https://openalex.org/W3105648287, https://openalex.org/W2525093158, https://openalex.org/W2795982117, https://openalex.org/W3176786901, https://openalex.org/W2994070579, https://openalex.org/W2997656901, https://openalex.org/W3048444177, https://openalex.org/W2968952502, https://openalex.org/W851405176, https://openalex.org/W3105370818, https://openalex.org/W3160326792 |
| referenced_works_count | 50 |
| abstract_inverted_index.a | 128, 131, 238, 254 |
| abstract_inverted_index.In | 17 |
| abstract_inverted_index.On | 197 |
| abstract_inverted_index.an | 10, 89 |
| abstract_inverted_index.as | 88, 213, 215 |
| abstract_inverted_index.be | 247 |
| abstract_inverted_index.by | 139 |
| abstract_inverted_index.if | 160, 182 |
| abstract_inverted_index.in | 1, 4, 61, 92, 232 |
| abstract_inverted_index.is | 60, 230 |
| abstract_inverted_index.of | 13, 41, 68, 86, 115, 118, 187, 200, 210, 240 |
| abstract_inverted_index.on | 253, 261 |
| abstract_inverted_index.or | 73 |
| abstract_inverted_index.to | 34, 51, 63, 77, 100, 150, 193, 249 |
| abstract_inverted_index.GEP | 141, 154, 171, 195 |
| abstract_inverted_index.The | 84, 127 |
| abstract_inverted_index.and | 28, 108, 130 |
| abstract_inverted_index.are | 32, 49 |
| abstract_inverted_index.can | 245 |
| abstract_inverted_index.for | 55, 207, 221, 264 |
| abstract_inverted_index.has | 8 |
| abstract_inverted_index.the | 5, 42, 56, 64, 102, 136, 161, 183, 188, 198, 202, 208, 222, 259 |
| abstract_inverted_index.two | 20 |
| abstract_inverted_index.was | 191 |
| abstract_inverted_index.TBNN | 143, 175 |
| abstract_inverted_index.This | 59 |
| abstract_inverted_index.also | 205 |
| abstract_inverted_index.data | 263 |
| abstract_inverted_index.flow | 242 |
| abstract_inverted_index.from | 47, 81, 97, 112, 156, 174 |
| abstract_inverted_index.seen | 9 |
| abstract_inverted_index.show | 134 |
| abstract_inverted_index.step | 91 |
| abstract_inverted_index.than | 181 |
| abstract_inverted_index.that | 135, 228 |
| abstract_inverted_index.then | 246 |
| abstract_inverted_index.this | 18 |
| abstract_inverted_index.used | 50, 192, 248 |
| abstract_inverted_index.well | 214 |
| abstract_inverted_index.were | 204, 219 |
| abstract_inverted_index.with | 142, 147, 153, 167 |
| abstract_inverted_index.TBNNs | 87 |
| abstract_inverted_index.These | 225 |
| abstract_inverted_index.basis | 24 |
| abstract_inverted_index.close | 78 |
| abstract_inverted_index.data. | 83, 158 |
| abstract_inverted_index.flows | 166 |
| abstract_inverted_index.input | 106 |
| abstract_inverted_index.learn | 52 |
| abstract_inverted_index.point | 199 |
| abstract_inverted_index.seen. | 224 |
| abstract_inverted_index.stems | 96 |
| abstract_inverted_index.terms | 218 |
| abstract_inverted_index.their | 98 |
| abstract_inverted_index.there | 229 |
| abstract_inverted_index.train | 194 |
| abstract_inverted_index.types | 117 |
| abstract_inverted_index.using | 69 |
| abstract_inverted_index.which | 120, 217, 244 |
| abstract_inverted_index.with. | 126 |
| abstract_inverted_index.work, | 19 |
| abstract_inverted_index.years | 7 |
| abstract_inverted_index.yield | 177 |
| abstract_inverted_index.(GEP), | 31 |
| abstract_inverted_index.basis, | 256 |
| abstract_inverted_index.better | 178 |
| abstract_inverted_index.either | 70 |
| abstract_inverted_index.fields | 110 |
| abstract_inverted_index.flows) | 190 |
| abstract_inverted_index.flows, | 119 |
| abstract_inverted_index.neural | 25, 71, 235 |
| abstract_inverted_index.output | 109 |
| abstract_inverted_index.priori | 129 |
| abstract_inverted_index.purely | 155 |
| abstract_inverted_index.recent | 6 |
| abstract_inverted_index.stress | 38, 57 |
| abstract_inverted_index.tensor | 23 |
| abstract_inverted_index.types, | 243 |
| abstract_inverted_index.(TBNNs) | 27 |
| abstract_inverted_index.ability | 99 |
| abstract_inverted_index.between | 105 |
| abstract_inverted_index.closure | 265 |
| abstract_inverted_index.complex | 103, 234 |
| abstract_inverted_index.extract | 35, 250 |
| abstract_inverted_index.produce | 145 |
| abstract_inverted_index.promise | 231 |
| abstract_inverted_index.results | 133, 146, 226 |
| abstract_inverted_index.similar | 148 |
| abstract_inverted_index.stress, | 45 |
| abstract_inverted_index.thereby | 257 |
| abstract_inverted_index.various | 14 |
| abstract_inverted_index.Reynolds | 37, 44, 79 |
| abstract_inverted_index.accuracy | 149, 180 |
| abstract_inverted_index.building | 233 |
| abstract_inverted_index.closures | 137, 151, 172, 203, 252 |
| abstract_inverted_index.combined | 33 |
| abstract_inverted_index.contains | 164 |
| abstract_inverted_index.contrast | 62 |
| abstract_inverted_index.database | 163, 185 |
| abstract_inverted_index.datasets | 114 |
| abstract_inverted_index.examined | 206 |
| abstract_inverted_index.features | 107 |
| abstract_inverted_index.indicate | 227 |
| abstract_inverted_index.maintain | 101 |
| abstract_inverted_index.multiple | 113, 165, 189 |
| abstract_inverted_index.networks | 26, 72, 236 |
| abstract_inverted_index.obtained | 46 |
| abstract_inverted_index.purposes | 209 |
| abstract_inverted_index.reducing | 258 |
| abstract_inverted_index.stresses | 80 |
| abstract_inverted_index.struggle | 125 |
| abstract_inverted_index.symbolic | 53, 74, 94, 121, 251 |
| abstract_inverted_index.uniquely | 168 |
| abstract_inverted_index.catalogue | 239 |
| abstract_inverted_index.closures. | 39, 58, 196 |
| abstract_inverted_index.currently | 124 |
| abstract_inverted_index.developed | 66, 138, 152, 173 |
| abstract_inverted_index.different | 21, 116, 169 |
| abstract_inverted_index.features, | 170 |
| abstract_inverted_index.informing | 140 |
| abstract_inverted_index.modelling | 3 |
| abstract_inverted_index.reduction | 212 |
| abstract_inverted_index.resulting | 111 |
| abstract_inverted_index.algorithms | 76, 123 |
| abstract_inverted_index.approaches | 67 |
| abstract_inverted_index.complexity | 211 |
| abstract_inverted_index.comprising | 237 |
| abstract_inverted_index.dependency | 260 |
| abstract_inverted_index.developing | 93 |
| abstract_inverted_index.increasing | 11 |
| abstract_inverted_index.modelling. | 266 |
| abstract_inverted_index.posteriori | 132 |
| abstract_inverted_index.prediction | 179 |
| abstract_inverted_index.previously | 65 |
| abstract_inverted_index.prominence | 12 |
| abstract_inverted_index.regression | 75, 122 |
| abstract_inverted_index.turbulence | 2 |
| abstract_inverted_index.(comprising | 186 |
| abstract_inverted_index.algorithms. | 16 |
| abstract_inverted_index.algorithms: | 22 |
| abstract_inverted_index.expressions | 54, 95 |
| abstract_inverted_index.involvement | 85 |
| abstract_inverted_index.predictions | 144, 176 |
| abstract_inverted_index.programming | 30 |
| abstract_inverted_index.responsible | 220 |
| abstract_inverted_index.Improvements | 0 |
| abstract_inverted_index.case-by-case | 255 |
| abstract_inverted_index.improvements | 223 |
| abstract_inverted_index.intermediate | 90 |
| abstract_inverted_index.wide-ranging | 241 |
| abstract_inverted_index.Additionally, | 159 |
| abstract_inverted_index.high-fidelity | 43, 82, 157, 162, 184, 262 |
| abstract_inverted_index.interpretable | 36 |
| abstract_inverted_index.relationships | 104 |
| abstract_inverted_index.understanding | 216 |
| abstract_inverted_index.deep-learning, | 48 |
| abstract_inverted_index.Representations | 40 |
| abstract_inverted_index.gene-expression | 29 |
| abstract_inverted_index.machine-learning | 15 |
| abstract_inverted_index.interpretability, | 201 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5051919799 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I165779595 |
| citation_normalized_percentile.value | 0.92245953 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |