A Data Augmentation Method and the Embedding Mechanism for Detection of Pulmonary Nodules on Small Samples Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1088/1742-6596/2890/1/012029
Lung Computed Tomography (CT) screening for pulmonary nodules provides an effective method for early diagnosis. The deep-learning-based computer-aided detection (CAD) system effectively identifies and precisely localizes suspicious pulmonary nodules in CT images, thereby significantly enhancing the accuracy and efficiency of CT diagnosis. In the medical field, the availability of medical data is limited, and research using small samples is of practical significance. By studying the data augmentation technology based on the generative model under the condition of small samples, and refining the model structure through the embedding mechanism, the accuracy and robustness of the deep learning model are explored. A 3D pixel-level statistical algorithm is proposed for the generation of pulmonary nodules. By combining simulated pulmonary nodules with healthy lung tissue, we can generate new samples of pulmonary nodules. The embedding mechanism is designed to enhance the comprehension of pixel meanings in pulmonary nodule samples by introducing latent variables. The results of the 3DVNET model with the augmentation method for pulmonary nodule detection under small sample conditions demonstrate that the proposed data augmentation method outperforms the method based on a generative adversarial network (GAN) framework, and the embedding mechanism for pulmonary nodules detection shows a significant improvement in accuracy. Conclusion: the proposed data augmentation method and embedding mechanism demonstrate significant potential in enhancing the accuracy and robustness of the model, thereby facilitating their application to various common imaging diagnostic tasks, and research using small samples is of practical significance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.1088/1742-6596/2890/1/012029
- OA Status
- diamond
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404528154
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404528154Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/1742-6596/2890/1/012029Digital Object Identifier
- Title
-
A Data Augmentation Method and the Embedding Mechanism for Detection of Pulmonary Nodules on Small SamplesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-01Full publication date if available
- Authors
-
Yang Liu, Yong Hou, Can Qin, Xiaomei Li, S J Li, B Wang, Changcong ZhouList of authors in order
- Landing page
-
https://doi.org/10.1088/1742-6596/2890/1/012029Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/1742-6596/2890/1/012029Direct OA link when available
- Concepts
-
Mechanism (biology), Embedding, Computer science, Medicine, Artificial intelligence, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404528154 |
|---|---|
| doi | https://doi.org/10.1088/1742-6596/2890/1/012029 |
| ids.doi | https://doi.org/10.1088/1742-6596/2890/1/012029 |
| ids.openalex | https://openalex.org/W4404528154 |
| fwci | 0.0 |
| type | article |
| title | A Data Augmentation Method and the Embedding Mechanism for Detection of Pulmonary Nodules on Small Samples |
| biblio.issue | 1 |
| biblio.volume | 2890 |
| biblio.last_page | 012029 |
| biblio.first_page | 012029 |
| topics[0].id | https://openalex.org/T11775 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | COVID-19 diagnosis using AI |
| topics[1].id | https://openalex.org/T10202 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2740 |
| topics[1].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[1].display_name | Lung Cancer Diagnosis and Treatment |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9898999929428101 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C89611455 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6309818625450134 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6804646 |
| concepts[0].display_name | Mechanism (biology) |
| concepts[1].id | https://openalex.org/C41608201 |
| concepts[1].level | 2 |
| concepts[1].score | 0.49352967739105225 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[1].display_name | Embedding |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.39657357335090637 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C71924100 |
| concepts[3].level | 0 |
| concepts[3].score | 0.34597766399383545 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[3].display_name | Medicine |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.23548313975334167 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C121332964 |
| concepts[5].level | 0 |
| concepts[5].score | 0.14688625931739807 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[5].display_name | Physics |
| concepts[6].id | https://openalex.org/C62520636 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[6].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/mechanism |
| keywords[0].score | 0.6309818625450134 |
| keywords[0].display_name | Mechanism (biology) |
| keywords[1].id | https://openalex.org/keywords/embedding |
| keywords[1].score | 0.49352967739105225 |
| keywords[1].display_name | Embedding |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.39657357335090637 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/medicine |
| keywords[3].score | 0.34597766399383545 |
| keywords[3].display_name | Medicine |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.23548313975334167 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/physics |
| keywords[5].score | 0.14688625931739807 |
| keywords[5].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1088/1742-6596/2890/1/012029 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210187594 |
| locations[0].source.issn | 1742-6588, 1742-6596 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1742-6588 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Physics Conference Series |
| locations[0].source.host_organization | https://openalex.org/P4310320083 |
| locations[0].source.host_organization_name | IOP Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Physics: Conference Series |
| locations[0].landing_page_url | http://doi.org/10.1088/1742-6596/2890/1/012029 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5012208204 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5462-2460 |
| authorships[0].author.display_name | Yang Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Y Liu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5023291196 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7570-6281 |
| authorships[1].author.display_name | Yong Hou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Y J Hou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5021042598 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0712-5378 |
| authorships[2].author.display_name | Can Qin |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | C X Qin |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5106276761 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7662-1925 |
| authorships[3].author.display_name | Xiaomei Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | X H Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5011137876 |
| authorships[4].author.orcid | https://orcid.org/0009-0003-6588-3086 |
| authorships[4].author.display_name | S J Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | S J Li |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5052491480 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | B Wang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | B Wang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5000903650 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6132-5544 |
| authorships[6].author.display_name | Changcong Zhou |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | C C Zhou |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://doi.org/10.1088/1742-6596/2890/1/012029 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Data Augmentation Method and the Embedding Mechanism for Detection of Pulmonary Nodules on Small Samples |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11775 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | COVID-19 diagnosis using AI |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3031052312, https://openalex.org/W4389568370, https://openalex.org/W3032375762, https://openalex.org/W1995515455, https://openalex.org/W2080531066, https://openalex.org/W3108674512, https://openalex.org/W1506200166 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1088/1742-6596/2890/1/012029 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210187594 |
| best_oa_location.source.issn | 1742-6588, 1742-6596 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1742-6588 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Physics Conference Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310320083 |
| best_oa_location.source.host_organization_name | IOP Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Physics: Conference Series |
| best_oa_location.landing_page_url | http://doi.org/10.1088/1742-6596/2890/1/012029 |
| primary_location.id | doi:10.1088/1742-6596/2890/1/012029 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210187594 |
| primary_location.source.issn | 1742-6588, 1742-6596 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1742-6588 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Physics Conference Series |
| primary_location.source.host_organization | https://openalex.org/P4310320083 |
| primary_location.source.host_organization_name | IOP Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320083, https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | IOP Publishing, Institute of Physics |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Physics: Conference Series |
| primary_location.landing_page_url | http://doi.org/10.1088/1742-6596/2890/1/012029 |
| publication_date | 2024-11-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3161948739, https://openalex.org/W3030688769, https://openalex.org/W2322371438, https://openalex.org/W2765811365, https://openalex.org/W2310992461, https://openalex.org/W2890139949, https://openalex.org/W3104561312, https://openalex.org/W3171873561, https://openalex.org/W6744545729, https://openalex.org/W2979651795, https://openalex.org/W3092817666, https://openalex.org/W3216998766, https://openalex.org/W1944881280, https://openalex.org/W2584017349, https://openalex.org/W1967923077, https://openalex.org/W2054648089, https://openalex.org/W6760774997, https://openalex.org/W6718240422, https://openalex.org/W4225747059, https://openalex.org/W2930921659, https://openalex.org/W2962914239, https://openalex.org/W2755012395 |
| referenced_works_count | 22 |
| abstract_inverted_index.A | 100 |
| abstract_inverted_index.a | 180, 195 |
| abstract_inverted_index.3D | 101 |
| abstract_inverted_index.By | 63, 113 |
| abstract_inverted_index.CT | 31, 41 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.an | 10 |
| abstract_inverted_index.by | 146 |
| abstract_inverted_index.in | 30, 142, 198, 212 |
| abstract_inverted_index.is | 52, 59, 105, 133, 236 |
| abstract_inverted_index.of | 40, 49, 60, 77, 93, 110, 127, 139, 152, 218, 237 |
| abstract_inverted_index.on | 70, 179 |
| abstract_inverted_index.to | 135, 225 |
| abstract_inverted_index.we | 122 |
| abstract_inverted_index.The | 16, 130, 150 |
| abstract_inverted_index.and | 24, 38, 54, 80, 91, 186, 206, 216, 231 |
| abstract_inverted_index.are | 98 |
| abstract_inverted_index.can | 123 |
| abstract_inverted_index.for | 6, 13, 107, 160, 190 |
| abstract_inverted_index.new | 125 |
| abstract_inverted_index.the | 36, 44, 47, 65, 71, 75, 82, 86, 89, 94, 108, 137, 153, 157, 170, 176, 187, 201, 214, 219 |
| abstract_inverted_index.(CT) | 4 |
| abstract_inverted_index.Lung | 1 |
| abstract_inverted_index.data | 51, 66, 172, 203 |
| abstract_inverted_index.deep | 95 |
| abstract_inverted_index.lung | 120 |
| abstract_inverted_index.that | 169 |
| abstract_inverted_index.with | 118, 156 |
| abstract_inverted_index.(CAD) | 20 |
| abstract_inverted_index.(GAN) | 184 |
| abstract_inverted_index.based | 69, 178 |
| abstract_inverted_index.early | 14 |
| abstract_inverted_index.model | 73, 83, 97, 155 |
| abstract_inverted_index.pixel | 140 |
| abstract_inverted_index.shows | 194 |
| abstract_inverted_index.small | 57, 78, 165, 234 |
| abstract_inverted_index.their | 223 |
| abstract_inverted_index.under | 74, 164 |
| abstract_inverted_index.using | 56, 233 |
| abstract_inverted_index.3DVNET | 154 |
| abstract_inverted_index.common | 227 |
| abstract_inverted_index.field, | 46 |
| abstract_inverted_index.latent | 148 |
| abstract_inverted_index.method | 12, 159, 174, 177, 205 |
| abstract_inverted_index.model, | 220 |
| abstract_inverted_index.nodule | 144, 162 |
| abstract_inverted_index.sample | 166 |
| abstract_inverted_index.system | 21 |
| abstract_inverted_index.tasks, | 230 |
| abstract_inverted_index.enhance | 136 |
| abstract_inverted_index.healthy | 119 |
| abstract_inverted_index.images, | 32 |
| abstract_inverted_index.imaging | 228 |
| abstract_inverted_index.medical | 45, 50 |
| abstract_inverted_index.network | 183 |
| abstract_inverted_index.nodules | 8, 29, 117, 192 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.samples | 58, 126, 145, 235 |
| abstract_inverted_index.thereby | 33, 221 |
| abstract_inverted_index.through | 85 |
| abstract_inverted_index.tissue, | 121 |
| abstract_inverted_index.various | 226 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Computed | 2 |
| abstract_inverted_index.accuracy | 37, 90, 215 |
| abstract_inverted_index.designed | 134 |
| abstract_inverted_index.generate | 124 |
| abstract_inverted_index.learning | 96 |
| abstract_inverted_index.limited, | 53 |
| abstract_inverted_index.meanings | 141 |
| abstract_inverted_index.nodules. | 112, 129 |
| abstract_inverted_index.proposed | 106, 171, 202 |
| abstract_inverted_index.provides | 9 |
| abstract_inverted_index.refining | 81 |
| abstract_inverted_index.research | 55, 232 |
| abstract_inverted_index.samples, | 79 |
| abstract_inverted_index.studying | 64 |
| abstract_inverted_index.accuracy. | 199 |
| abstract_inverted_index.algorithm | 104 |
| abstract_inverted_index.combining | 114 |
| abstract_inverted_index.condition | 76 |
| abstract_inverted_index.detection | 19, 163, 193 |
| abstract_inverted_index.effective | 11 |
| abstract_inverted_index.embedding | 87, 131, 188, 207 |
| abstract_inverted_index.enhancing | 35, 213 |
| abstract_inverted_index.explored. | 99 |
| abstract_inverted_index.localizes | 26 |
| abstract_inverted_index.mechanism | 132, 189, 208 |
| abstract_inverted_index.potential | 211 |
| abstract_inverted_index.practical | 61, 238 |
| abstract_inverted_index.precisely | 25 |
| abstract_inverted_index.pulmonary | 7, 28, 111, 116, 128, 143, 161, 191 |
| abstract_inverted_index.screening | 5 |
| abstract_inverted_index.simulated | 115 |
| abstract_inverted_index.structure | 84 |
| abstract_inverted_index.Tomography | 3 |
| abstract_inverted_index.conditions | 167 |
| abstract_inverted_index.diagnosis. | 15, 42 |
| abstract_inverted_index.diagnostic | 229 |
| abstract_inverted_index.efficiency | 39 |
| abstract_inverted_index.framework, | 185 |
| abstract_inverted_index.generation | 109 |
| abstract_inverted_index.generative | 72, 181 |
| abstract_inverted_index.identifies | 23 |
| abstract_inverted_index.mechanism, | 88 |
| abstract_inverted_index.robustness | 92, 217 |
| abstract_inverted_index.suspicious | 27 |
| abstract_inverted_index.technology | 68 |
| abstract_inverted_index.variables. | 149 |
| abstract_inverted_index.Conclusion: | 200 |
| abstract_inverted_index.adversarial | 182 |
| abstract_inverted_index.application | 224 |
| abstract_inverted_index.demonstrate | 168, 209 |
| abstract_inverted_index.effectively | 22 |
| abstract_inverted_index.improvement | 197 |
| abstract_inverted_index.introducing | 147 |
| abstract_inverted_index.outperforms | 175 |
| abstract_inverted_index.pixel-level | 102 |
| abstract_inverted_index.significant | 196, 210 |
| abstract_inverted_index.statistical | 103 |
| abstract_inverted_index.augmentation | 67, 158, 173, 204 |
| abstract_inverted_index.availability | 48 |
| abstract_inverted_index.facilitating | 222 |
| abstract_inverted_index.comprehension | 138 |
| abstract_inverted_index.significance. | 62, 239 |
| abstract_inverted_index.significantly | 34 |
| abstract_inverted_index.computer-aided | 18 |
| abstract_inverted_index.deep-learning-based | 17 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.38162213 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |