A data augmentation method for pavement crack detection based on super‐resolution and denoising diffusion probabilistic models Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1111/mice.70050
Automated detection of pavement cracks is a task of wide interest. With the improvement of industrialization, high‐resolution (HR) images are increasingly favored by researchers due to their ability to provide rich information about pavements and diseases. However, the acquisition of effective training data is not easy, which affects the accuracy and robustness of the detection model. Although the recently emerged denoising diffusion probabilistic model (DDPM) overcomes the inherent pattern collapse problem of generative adversarial networks and is capable of generating more diverse and realistic pavement data, its high sampling cost hinders the generation of HR images with rich texture information. To overcome this limitation, this paper proposed a low‐cost, two‐step data augmentation method that combines DDPM with super‐resolution. The method first generated small‐sized pavement crack images using DDPM and then enhanced resolution and texture details using an improved SwinIR model. The resulting HR and diverse crack images were used to augment the dataset. The effectiveness of the proposed method was evaluated using four state‐of‐the‐art object detection models. Experimental results showed that all models trained with the augmented training dataset exhibited better performance. Furthermore, when combined with geometric transformation techniques, the proposed method was able to improve the crack detection accuracy by up to approximately 12%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/mice.70050
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.70050
- OA Status
- hybrid
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413897258
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413897258Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/mice.70050Digital Object Identifier
- Title
-
A data augmentation method for pavement crack detection based on super‐resolution and denoising diffusion probabilistic modelsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-31Full publication date if available
- Authors
-
Hui Yao, Yanhao Liu, Svetlana Besklubova, Ioannis Brilakis, Meng Guo, Jin Wang, Min WangList of authors in order
- Landing page
-
https://doi.org/10.1111/mice.70050Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.70050Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.70050Direct OA link when available
- Concepts
-
Probabilistic logic, Noise reduction, Diffusion, Computer science, Artificial intelligence, Data mining, Physics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413897258 |
|---|---|
| doi | https://doi.org/10.1111/mice.70050 |
| ids.doi | https://doi.org/10.1111/mice.70050 |
| ids.openalex | https://openalex.org/W4413897258 |
| fwci | 0.0 |
| type | article |
| title | A data augmentation method for pavement crack detection based on super‐resolution and denoising diffusion probabilistic models |
| biblio.issue | 25 |
| biblio.volume | 40 |
| biblio.last_page | 4225 |
| biblio.first_page | 4212 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T10688 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.992900013923645 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image and Signal Denoising Methods |
| topics[2].id | https://openalex.org/T10264 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9891999959945679 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Asphalt Pavement Performance Evaluation |
| is_xpac | False |
| apc_list.value | 4740 |
| apc_list.currency | USD |
| apc_list.value_usd | 4740 |
| apc_paid.value | 4740 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 4740 |
| concepts[0].id | https://openalex.org/C49937458 |
| concepts[0].level | 2 |
| concepts[0].score | 0.682517945766449 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2599292 |
| concepts[0].display_name | Probabilistic logic |
| concepts[1].id | https://openalex.org/C163294075 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6021072864532471 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q581861 |
| concepts[1].display_name | Noise reduction |
| concepts[2].id | https://openalex.org/C69357855 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5139009952545166 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q163214 |
| concepts[2].display_name | Diffusion |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5019135475158691 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.33755576610565186 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.33089250326156616 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C121332964 |
| concepts[6].level | 0 |
| concepts[6].score | 0.06192508339881897 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[6].display_name | Physics |
| concepts[7].id | https://openalex.org/C97355855 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[7].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/probabilistic-logic |
| keywords[0].score | 0.682517945766449 |
| keywords[0].display_name | Probabilistic logic |
| keywords[1].id | https://openalex.org/keywords/noise-reduction |
| keywords[1].score | 0.6021072864532471 |
| keywords[1].display_name | Noise reduction |
| keywords[2].id | https://openalex.org/keywords/diffusion |
| keywords[2].score | 0.5139009952545166 |
| keywords[2].display_name | Diffusion |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5019135475158691 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.33755576610565186 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.33089250326156616 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/physics |
| keywords[6].score | 0.06192508339881897 |
| keywords[6].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1111/mice.70050 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S206927758 |
| locations[0].source.issn | 1093-9687, 1467-8667 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1093-9687 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Computer-Aided Civil and Infrastructure Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.70050 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Computer-Aided Civil and Infrastructure Engineering |
| locations[0].landing_page_url | https://doi.org/10.1111/mice.70050 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5023987208 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-8735-5207 |
| authorships[0].author.display_name | Hui Yao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Traffic Engineering College of Metropolitan Transportation Beijing University of Technology Beijing China |
| authorships[0].institutions[0].id | https://openalex.org/I37796252 |
| authorships[0].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beijing University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hui Yao |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Key Laboratory of Traffic Engineering College of Metropolitan Transportation Beijing University of Technology Beijing China |
| authorships[1].author.id | https://openalex.org/A5101664660 |
| authorships[1].author.orcid | https://orcid.org/0009-0003-8706-5543 |
| authorships[1].author.display_name | Yanhao Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Traffic Engineering College of Metropolitan Transportation Beijing University of Technology Beijing China |
| authorships[1].institutions[0].id | https://openalex.org/I37796252 |
| authorships[1].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beijing University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yanhao Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Key Laboratory of Traffic Engineering College of Metropolitan Transportation Beijing University of Technology Beijing China |
| authorships[2].author.id | https://openalex.org/A5119505290 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Svetlana Besklubova |
| authorships[2].countries | PL |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Engineering University of Cambridge Cambridge United Kingdom |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210105686 |
| authorships[2].affiliations[1].raw_affiliation_string | Academy of Silesia Katowice Poland |
| authorships[2].institutions[0].id | https://openalex.org/I4210105686 |
| authorships[2].institutions[0].ror | https://ror.org/01b33j376 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210105686 |
| authorships[2].institutions[0].country_code | PL |
| authorships[2].institutions[0].display_name | Academy of Fine Arts in Katowice |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Svetlana Besklubova |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Academy of Silesia Katowice Poland, Department of Engineering University of Cambridge Cambridge United Kingdom |
| authorships[3].author.id | https://openalex.org/A5009407093 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1829-2083 |
| authorships[3].author.display_name | Ioannis Brilakis |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Engineering University of Cambridge Cambridge United Kingdom |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Ioannis Brilakis |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Engineering University of Cambridge Cambridge United Kingdom |
| authorships[4].author.id | https://openalex.org/A5045785170 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3316-1815 |
| authorships[4].author.display_name | Meng Guo |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[4].affiliations[0].raw_affiliation_string | The Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education Beijing University of Technology Beijing China |
| authorships[4].institutions[0].id | https://openalex.org/I37796252 |
| authorships[4].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beijing University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Meng Guo |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | The Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education Beijing University of Technology Beijing China |
| authorships[5].author.id | https://openalex.org/A5100346140 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1531-0912 |
| authorships[5].author.display_name | Jin Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I37796252 |
| authorships[5].affiliations[0].raw_affiliation_string | Beijing Key Laboratory of Traffic Engineering College of Metropolitan Transportation Beijing University of Technology Beijing China |
| authorships[5].institutions[0].id | https://openalex.org/I37796252 |
| authorships[5].institutions[0].ror | https://ror.org/037b1pp87 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I37796252 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beijing University of Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jin Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Beijing Key Laboratory of Traffic Engineering College of Metropolitan Transportation Beijing University of Technology Beijing China |
| authorships[6].author.id | https://openalex.org/A5100340951 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9233-7844 |
| authorships[6].author.display_name | Min Wang |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I45438204 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Statistics and Data Science The University of Texas San Antonio Texas USA |
| authorships[6].institutions[0].id | https://openalex.org/I45438204 |
| authorships[6].institutions[0].ror | https://ror.org/01kd65564 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I45438204 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | The University of Texas at San Antonio |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Min Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Statistics and Data Science The University of Texas San Antonio Texas USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.70050 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A data augmentation method for pavement crack detection based on super‐resolution and denoising diffusion probabilistic models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W2943623134, https://openalex.org/W2494523064, https://openalex.org/W2215759665, https://openalex.org/W2030292806, https://openalex.org/W2960358116, https://openalex.org/W2938171715, https://openalex.org/W4287727129, https://openalex.org/W3041172967, https://openalex.org/W2749065928, https://openalex.org/W2147155098 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1111/mice.70050 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S206927758 |
| best_oa_location.source.issn | 1093-9687, 1467-8667 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1093-9687 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Computer-Aided Civil and Infrastructure Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.70050 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Computer-Aided Civil and Infrastructure Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1111/mice.70050 |
| primary_location.id | doi:10.1111/mice.70050 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S206927758 |
| primary_location.source.issn | 1093-9687, 1467-8667 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1093-9687 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Computer-Aided Civil and Infrastructure Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/mice.70050 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Computer-Aided Civil and Infrastructure Engineering |
| primary_location.landing_page_url | https://doi.org/10.1111/mice.70050 |
| publication_date | 2025-08-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4307296199, https://openalex.org/W4390414817, https://openalex.org/W4213012943, https://openalex.org/W4298148810, https://openalex.org/W1885185971, https://openalex.org/W2194775991, https://openalex.org/W2752782242, https://openalex.org/W4396747171, https://openalex.org/W4200099066, https://openalex.org/W2963470893, https://openalex.org/W3084487255, https://openalex.org/W2899818400, https://openalex.org/W3207918547, https://openalex.org/W2963372104, https://openalex.org/W3087277009, https://openalex.org/W3138516171, https://openalex.org/W4323045377, https://openalex.org/W4320000551, https://openalex.org/W4285296899, https://openalex.org/W4297364263, https://openalex.org/W4391107516, https://openalex.org/W4409004385, https://openalex.org/W2898456550, https://openalex.org/W4388342824, https://openalex.org/W2894295805, https://openalex.org/W4312933868, https://openalex.org/W2962858109, https://openalex.org/W4394858483, https://openalex.org/W4388179568, https://openalex.org/W4388968307, https://openalex.org/W4281750281, https://openalex.org/W4285254182, https://openalex.org/W4389107895, https://openalex.org/W4384927866, https://openalex.org/W4400438859, https://openalex.org/W4309852497, https://openalex.org/W4392372815, https://openalex.org/W2511065100, https://openalex.org/W4391798023, https://openalex.org/W2964101377, https://openalex.org/W2058988978, https://openalex.org/W4313491188, https://openalex.org/W4387336396, https://openalex.org/W4385245566, https://openalex.org/W2561675875 |
| referenced_works_count | 45 |
| abstract_inverted_index.a | 7, 108 |
| abstract_inverted_index.HR | 95, 143 |
| abstract_inverted_index.To | 101 |
| abstract_inverted_index.an | 137 |
| abstract_inverted_index.by | 23, 201 |
| abstract_inverted_index.is | 6, 44, 77 |
| abstract_inverted_index.of | 3, 9, 15, 40, 53, 72, 79, 94, 156 |
| abstract_inverted_index.to | 26, 29, 150, 195, 203 |
| abstract_inverted_index.up | 202 |
| abstract_inverted_index.The | 119, 141, 154 |
| abstract_inverted_index.all | 172 |
| abstract_inverted_index.and | 35, 51, 76, 83, 129, 133, 144 |
| abstract_inverted_index.are | 20 |
| abstract_inverted_index.due | 25 |
| abstract_inverted_index.its | 87 |
| abstract_inverted_index.not | 45 |
| abstract_inverted_index.the | 13, 38, 49, 54, 58, 67, 92, 152, 157, 176, 190, 197 |
| abstract_inverted_index.was | 160, 193 |
| abstract_inverted_index.(HR) | 18 |
| abstract_inverted_index.12%. | 205 |
| abstract_inverted_index.DDPM | 116, 128 |
| abstract_inverted_index.With | 12 |
| abstract_inverted_index.able | 194 |
| abstract_inverted_index.cost | 90 |
| abstract_inverted_index.data | 43, 111 |
| abstract_inverted_index.four | 163 |
| abstract_inverted_index.high | 88 |
| abstract_inverted_index.more | 81 |
| abstract_inverted_index.rich | 31, 98 |
| abstract_inverted_index.task | 8 |
| abstract_inverted_index.that | 114, 171 |
| abstract_inverted_index.then | 130 |
| abstract_inverted_index.this | 103, 105 |
| abstract_inverted_index.used | 149 |
| abstract_inverted_index.were | 148 |
| abstract_inverted_index.when | 184 |
| abstract_inverted_index.wide | 10 |
| abstract_inverted_index.with | 97, 117, 175, 186 |
| abstract_inverted_index.about | 33 |
| abstract_inverted_index.crack | 125, 146, 198 |
| abstract_inverted_index.data, | 86 |
| abstract_inverted_index.easy, | 46 |
| abstract_inverted_index.first | 121 |
| abstract_inverted_index.model | 64 |
| abstract_inverted_index.paper | 106 |
| abstract_inverted_index.their | 27 |
| abstract_inverted_index.using | 127, 136, 162 |
| abstract_inverted_index.which | 47 |
| abstract_inverted_index.(DDPM) | 65 |
| abstract_inverted_index.SwinIR | 139 |
| abstract_inverted_index.better | 181 |
| abstract_inverted_index.cracks | 5 |
| abstract_inverted_index.images | 19, 96, 126, 147 |
| abstract_inverted_index.method | 113, 120, 159, 192 |
| abstract_inverted_index.model. | 56, 140 |
| abstract_inverted_index.models | 173 |
| abstract_inverted_index.object | 165 |
| abstract_inverted_index.showed | 170 |
| abstract_inverted_index.ability | 28 |
| abstract_inverted_index.affects | 48 |
| abstract_inverted_index.augment | 151 |
| abstract_inverted_index.capable | 78 |
| abstract_inverted_index.dataset | 179 |
| abstract_inverted_index.details | 135 |
| abstract_inverted_index.diverse | 82, 145 |
| abstract_inverted_index.emerged | 60 |
| abstract_inverted_index.favored | 22 |
| abstract_inverted_index.hinders | 91 |
| abstract_inverted_index.improve | 196 |
| abstract_inverted_index.models. | 167 |
| abstract_inverted_index.pattern | 69 |
| abstract_inverted_index.problem | 71 |
| abstract_inverted_index.provide | 30 |
| abstract_inverted_index.results | 169 |
| abstract_inverted_index.texture | 99, 134 |
| abstract_inverted_index.trained | 174 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Although | 57 |
| abstract_inverted_index.However, | 37 |
| abstract_inverted_index.accuracy | 50, 200 |
| abstract_inverted_index.collapse | 70 |
| abstract_inverted_index.combined | 185 |
| abstract_inverted_index.combines | 115 |
| abstract_inverted_index.dataset. | 153 |
| abstract_inverted_index.enhanced | 131 |
| abstract_inverted_index.improved | 138 |
| abstract_inverted_index.inherent | 68 |
| abstract_inverted_index.networks | 75 |
| abstract_inverted_index.overcome | 102 |
| abstract_inverted_index.pavement | 4, 85, 124 |
| abstract_inverted_index.proposed | 107, 158, 191 |
| abstract_inverted_index.recently | 59 |
| abstract_inverted_index.sampling | 89 |
| abstract_inverted_index.training | 42, 178 |
| abstract_inverted_index.Automated | 1 |
| abstract_inverted_index.augmented | 177 |
| abstract_inverted_index.denoising | 61 |
| abstract_inverted_index.detection | 2, 55, 166, 199 |
| abstract_inverted_index.diffusion | 62 |
| abstract_inverted_index.diseases. | 36 |
| abstract_inverted_index.effective | 41 |
| abstract_inverted_index.evaluated | 161 |
| abstract_inverted_index.exhibited | 180 |
| abstract_inverted_index.generated | 122 |
| abstract_inverted_index.geometric | 187 |
| abstract_inverted_index.interest. | 11 |
| abstract_inverted_index.overcomes | 66 |
| abstract_inverted_index.pavements | 34 |
| abstract_inverted_index.realistic | 84 |
| abstract_inverted_index.resulting | 142 |
| abstract_inverted_index.generating | 80 |
| abstract_inverted_index.generation | 93 |
| abstract_inverted_index.generative | 73 |
| abstract_inverted_index.resolution | 132 |
| abstract_inverted_index.robustness | 52 |
| abstract_inverted_index.two‐step | 110 |
| abstract_inverted_index.acquisition | 39 |
| abstract_inverted_index.adversarial | 74 |
| abstract_inverted_index.improvement | 14 |
| abstract_inverted_index.information | 32 |
| abstract_inverted_index.limitation, | 104 |
| abstract_inverted_index.low‐cost, | 109 |
| abstract_inverted_index.researchers | 24 |
| abstract_inverted_index.techniques, | 189 |
| abstract_inverted_index.Experimental | 168 |
| abstract_inverted_index.Furthermore, | 183 |
| abstract_inverted_index.augmentation | 112 |
| abstract_inverted_index.increasingly | 21 |
| abstract_inverted_index.information. | 100 |
| abstract_inverted_index.performance. | 182 |
| abstract_inverted_index.approximately | 204 |
| abstract_inverted_index.effectiveness | 155 |
| abstract_inverted_index.probabilistic | 63 |
| abstract_inverted_index.small‐sized | 123 |
| abstract_inverted_index.transformation | 188 |
| abstract_inverted_index.high‐resolution | 17 |
| abstract_inverted_index.industrialization, | 16 |
| abstract_inverted_index.super‐resolution. | 118 |
| abstract_inverted_index.state‐of‐the‐art | 164 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.44252562 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |