A Data-Driven Convolutional Regression Scheme For On-Board and Quantitative Detection of Rail Corrugation Roughness Article Swipe
Qinglin Xie
,
Gongquan Tao
,
Siuming Lo
,
Xiaoxuan Yang
,
Zefeng Wen
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4208108
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4208108
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.4208108
- OA Status
- green
- Cited By
- 3
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4294391128
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4294391128Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.4208108Digital Object Identifier
- Title
-
A Data-Driven Convolutional Regression Scheme For On-Board and Quantitative Detection of Rail Corrugation RoughnessWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Qinglin Xie, Gongquan Tao, Siuming Lo, Xiaoxuan Yang, Zefeng WenList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.4208108Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.4208108Direct OA link when available
- Concepts
-
Regression analysis, Regression, Surface finish, Scheme (mathematics), Linear regression, Computer science, Statistics, Data mining, Environmental science, Engineering, Mathematics, Machine learning, Mathematical analysis, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4294391128 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.4208108 |
| ids.doi | https://doi.org/10.2139/ssrn.4208108 |
| ids.openalex | https://openalex.org/W4294391128 |
| fwci | 0.37094784 |
| type | article |
| title | A Data-Driven Convolutional Regression Scheme For On-Board and Quantitative Detection of Rail Corrugation Roughness |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10842 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9923999905586243 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2210 |
| topics[0].subfield.display_name | Mechanical Engineering |
| topics[0].display_name | Railway Engineering and Dynamics |
| topics[1].id | https://openalex.org/T11606 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9916999936103821 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Infrastructure Maintenance and Monitoring |
| topics[2].id | https://openalex.org/T12707 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9440000057220459 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Vehicle License Plate Recognition |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C152877465 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5435393452644348 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[0].display_name | Regression analysis |
| concepts[1].id | https://openalex.org/C83546350 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5377936363220215 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[1].display_name | Regression |
| concepts[2].id | https://openalex.org/C71039073 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5111573338508606 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3439090 |
| concepts[2].display_name | Surface finish |
| concepts[3].id | https://openalex.org/C77618280 |
| concepts[3].level | 2 |
| concepts[3].score | 0.46450042724609375 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1155772 |
| concepts[3].display_name | Scheme (mathematics) |
| concepts[4].id | https://openalex.org/C48921125 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4539766311645508 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q10861030 |
| concepts[4].display_name | Linear regression |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.45084691047668457 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3794192671775818 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.35832279920578003 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C39432304 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3336073160171509 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[8].display_name | Environmental science |
| concepts[9].id | https://openalex.org/C127413603 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2624412477016449 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[9].display_name | Engineering |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.23003262281417847 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.22599664330482483 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C134306372 |
| concepts[12].level | 1 |
| concepts[12].score | 0.08494815230369568 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[12].display_name | Mathematical analysis |
| concepts[13].id | https://openalex.org/C78519656 |
| concepts[13].level | 1 |
| concepts[13].score | 0.08065208792686462 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[13].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/regression-analysis |
| keywords[0].score | 0.5435393452644348 |
| keywords[0].display_name | Regression analysis |
| keywords[1].id | https://openalex.org/keywords/regression |
| keywords[1].score | 0.5377936363220215 |
| keywords[1].display_name | Regression |
| keywords[2].id | https://openalex.org/keywords/surface-finish |
| keywords[2].score | 0.5111573338508606 |
| keywords[2].display_name | Surface finish |
| keywords[3].id | https://openalex.org/keywords/scheme |
| keywords[3].score | 0.46450042724609375 |
| keywords[3].display_name | Scheme (mathematics) |
| keywords[4].id | https://openalex.org/keywords/linear-regression |
| keywords[4].score | 0.4539766311645508 |
| keywords[4].display_name | Linear regression |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.45084691047668457 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.3794192671775818 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.35832279920578003 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/environmental-science |
| keywords[8].score | 0.3336073160171509 |
| keywords[8].display_name | Environmental science |
| keywords[9].id | https://openalex.org/keywords/engineering |
| keywords[9].score | 0.2624412477016449 |
| keywords[9].display_name | Engineering |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.23003262281417847 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.22599664330482483 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/mathematical-analysis |
| keywords[12].score | 0.08494815230369568 |
| keywords[12].display_name | Mathematical analysis |
| keywords[13].id | https://openalex.org/keywords/mechanical-engineering |
| keywords[13].score | 0.08065208792686462 |
| keywords[13].display_name | Mechanical engineering |
| language | en |
| locations[0].id | doi:10.2139/ssrn.4208108 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | SSRN Electronic Journal |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.4208108 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100679976 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Qinglin Xie |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qinglin Xie |
| authorships[0].is_corresponding | True |
| authorships[1].author.id | https://openalex.org/A5032646265 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1836-2363 |
| authorships[1].author.display_name | Gongquan Tao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gongquan Tao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5051121638 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9146-0579 |
| authorships[2].author.display_name | Siuming Lo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Siuming Lo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5080236384 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2553-2631 |
| authorships[3].author.display_name | Xiaoxuan Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiaoxuan Yang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5009263710 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8883-9462 |
| authorships[4].author.display_name | Zefeng Wen |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zefeng Wen |
| authorships[4].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.4208108 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Data-Driven Convolutional Regression Scheme For On-Board and Quantitative Detection of Rail Corrugation Roughness |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10842 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9923999905586243 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2210 |
| primary_topic.subfield.display_name | Mechanical Engineering |
| primary_topic.display_name | Railway Engineering and Dynamics |
| related_works | https://openalex.org/W2375721435, https://openalex.org/W2060912888, https://openalex.org/W2184922845, https://openalex.org/W2738033194, https://openalex.org/W4290879003, https://openalex.org/W3122861356, https://openalex.org/W2018697919, https://openalex.org/W2062105804, https://openalex.org/W247449116, https://openalex.org/W2325374573 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.4208108 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | SSRN Electronic Journal |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.4208108 |
| primary_location.id | doi:10.2139/ssrn.4208108 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | SSRN Electronic Journal |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.4208108 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5100679976 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.51939975 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |