A data-driven framework for conceptual cost estimation of infrastructure projects using XGBoost and Bayesian optimization Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1080/13467581.2023.2294871
Cost estimation is a key component of project plans, yet it is challenging to provide reliable and efficient estimations using conventional methods in the conceptual phase of infrastructure projects. This study proposes a framework that integrates feature selection, extreme gradient boosting (XGBoost), Bayesian optimization (BO), and SHapley Additive exPlanations (SHAP) to provide conceptual cost estimations and explain the results for early decision-making. Correlation analysis and forward search are combined to select the key features. XGBoost is developed as the estimator and enhanced by BO in accuracy and efficiency. Model explanations were presented using SHAP. The framework is demonstrated through a case study of electric substations containing 605 samples. The results show that the proposed framework can provide satisfactory performance on conceptual cost estimations, where BO-XGBoost outperforms the benchmark models (with ${R^2}$ ~0.9567, adjusted ${R^2}$ ~0.9549, RMSE ~ 0.8690, and MAE ~ 0.4875). SHAP reveals how the features contribute to the cost based on both global and local explanations. The framework provides a guideline for more accurate, efficient, and explainable cost estimations in the conceptual phase of infrastructure projects. It can support the government and project planners in early decision-making, including reliable project budget and plan alternatives selection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/13467581.2023.2294871
- https://www.tandfonline.com/doi/pdf/10.1080/13467581.2023.2294871?needAccess=true
- OA Status
- gold
- Cited By
- 15
- References
- 56
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390612190
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390612190Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/13467581.2023.2294871Digital Object Identifier
- Title
-
A data-driven framework for conceptual cost estimation of infrastructure projects using XGBoost and Bayesian optimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-04Full publication date if available
- Authors
-
Jiashu Zhang, Jingfeng Yuan, Amin Mahmoudi, Wenying Ji, Qiushi FangList of authors in order
- Landing page
-
https://doi.org/10.1080/13467581.2023.2294871Publisher landing page
- PDF URL
-
https://www.tandfonline.com/doi/pdf/10.1080/13467581.2023.2294871?needAccess=trueDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.tandfonline.com/doi/pdf/10.1080/13467581.2023.2294871?needAccess=trueDirect OA link when available
- Concepts
-
Cost estimate, Computer science, Benchmark (surveying), Conceptual framework, Estimator, Selection (genetic algorithm), Key (lock), Feature selection, Bayesian probability, Data mining, Operations research, Machine learning, Artificial intelligence, Engineering, Systems engineering, Mathematics, Statistics, Computer security, Geography, Geodesy, Philosophy, EpistemologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 14, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
56Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390612190 |
|---|---|
| doi | https://doi.org/10.1080/13467581.2023.2294871 |
| ids.doi | https://doi.org/10.1080/13467581.2023.2294871 |
| ids.openalex | https://openalex.org/W4390612190 |
| fwci | 7.36409496 |
| type | article |
| title | A data-driven framework for conceptual cost estimation of infrastructure projects using XGBoost and Bayesian optimization |
| biblio.issue | 2 |
| biblio.volume | 24 |
| biblio.last_page | 774 |
| biblio.first_page | 751 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9965000152587891 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T11801 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9824000000953674 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2212 |
| topics[1].subfield.display_name | Ocean Engineering |
| topics[1].display_name | Reservoir Engineering and Simulation Methods |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9821000099182129 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list.value | 950 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1165 |
| apc_paid.value | 950 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1165 |
| concepts[0].id | https://openalex.org/C93983250 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6257535219192505 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q795053 |
| concepts[0].display_name | Cost estimate |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5504593849182129 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5396523475646973 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C14224292 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5214133262634277 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q13600188 |
| concepts[3].display_name | Conceptual framework |
| concepts[4].id | https://openalex.org/C185429906 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5057201385498047 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[4].display_name | Estimator |
| concepts[5].id | https://openalex.org/C81917197 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46848973631858826 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[5].display_name | Selection (genetic algorithm) |
| concepts[6].id | https://openalex.org/C26517878 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46564802527427673 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[6].display_name | Key (lock) |
| concepts[7].id | https://openalex.org/C148483581 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4415069818496704 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[7].display_name | Feature selection |
| concepts[8].id | https://openalex.org/C107673813 |
| concepts[8].level | 2 |
| concepts[8].score | 0.419063925743103 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q812534 |
| concepts[8].display_name | Bayesian probability |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.41603395342826843 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C42475967 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3822641968727112 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[10].display_name | Operations research |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3133534789085388 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2714165151119232 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C127413603 |
| concepts[13].level | 0 |
| concepts[13].score | 0.20695975422859192 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[13].display_name | Engineering |
| concepts[14].id | https://openalex.org/C201995342 |
| concepts[14].level | 1 |
| concepts[14].score | 0.15657836198806763 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[14].display_name | Systems engineering |
| concepts[15].id | https://openalex.org/C33923547 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1259908676147461 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[15].display_name | Mathematics |
| concepts[16].id | https://openalex.org/C105795698 |
| concepts[16].level | 1 |
| concepts[16].score | 0.10437121987342834 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[16].display_name | Statistics |
| concepts[17].id | https://openalex.org/C38652104 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[17].display_name | Computer security |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C13280743 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[19].display_name | Geodesy |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C111472728 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q9471 |
| concepts[21].display_name | Epistemology |
| keywords[0].id | https://openalex.org/keywords/cost-estimate |
| keywords[0].score | 0.6257535219192505 |
| keywords[0].display_name | Cost estimate |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5504593849182129 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.5396523475646973 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/conceptual-framework |
| keywords[3].score | 0.5214133262634277 |
| keywords[3].display_name | Conceptual framework |
| keywords[4].id | https://openalex.org/keywords/estimator |
| keywords[4].score | 0.5057201385498047 |
| keywords[4].display_name | Estimator |
| keywords[5].id | https://openalex.org/keywords/selection |
| keywords[5].score | 0.46848973631858826 |
| keywords[5].display_name | Selection (genetic algorithm) |
| keywords[6].id | https://openalex.org/keywords/key |
| keywords[6].score | 0.46564802527427673 |
| keywords[6].display_name | Key (lock) |
| keywords[7].id | https://openalex.org/keywords/feature-selection |
| keywords[7].score | 0.4415069818496704 |
| keywords[7].display_name | Feature selection |
| keywords[8].id | https://openalex.org/keywords/bayesian-probability |
| keywords[8].score | 0.419063925743103 |
| keywords[8].display_name | Bayesian probability |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.41603395342826843 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/operations-research |
| keywords[10].score | 0.3822641968727112 |
| keywords[10].display_name | Operations research |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.3133534789085388 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2714165151119232 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/engineering |
| keywords[13].score | 0.20695975422859192 |
| keywords[13].display_name | Engineering |
| keywords[14].id | https://openalex.org/keywords/systems-engineering |
| keywords[14].score | 0.15657836198806763 |
| keywords[14].display_name | Systems engineering |
| keywords[15].id | https://openalex.org/keywords/mathematics |
| keywords[15].score | 0.1259908676147461 |
| keywords[15].display_name | Mathematics |
| keywords[16].id | https://openalex.org/keywords/statistics |
| keywords[16].score | 0.10437121987342834 |
| keywords[16].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.1080/13467581.2023.2294871 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S100777832 |
| locations[0].source.issn | 1346-7581, 1347-2852 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1346-7581 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Journal of Asian Architecture and Building Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/13467581.2023.2294871?needAccess=true |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Asian Architecture and Building Engineering |
| locations[0].landing_page_url | https://doi.org/10.1080/13467581.2023.2294871 |
| locations[1].id | pmh:oai:doaj.org/article:e7790316ad9f44cf99579687c1b2b2d7 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Asian Architecture and Building Engineering, Vol 24, Iss 2, Pp 751-774 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/e7790316ad9f44cf99579687c1b2b2d7 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5059626844 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2875-3293 |
| authorships[0].author.display_name | Jiashu Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing, China |
| authorships[0].institutions[0].id | https://openalex.org/I76569877 |
| authorships[0].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Southeast University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiashu Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing, China |
| authorships[1].author.id | https://openalex.org/A5015934581 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0922-6853 |
| authorships[1].author.display_name | Jingfeng Yuan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing, China |
| authorships[1].institutions[0].id | https://openalex.org/I76569877 |
| authorships[1].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Southeast University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jingfeng Yuan |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing, China |
| authorships[2].author.id | https://openalex.org/A5072645862 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7091-5044 |
| authorships[2].author.display_name | Amin Mahmoudi |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I76569877 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing, China |
| authorships[2].institutions[0].id | https://openalex.org/I76569877 |
| authorships[2].institutions[0].ror | https://ror.org/04ct4d772 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I76569877 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Southeast University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Amin Mahmoudi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Construction and Real Estate, School of Civil Engineering, Southeast University, Nanjing, China |
| authorships[3].author.id | https://openalex.org/A5070155512 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1222-2191 |
| authorships[3].author.display_name | Wenying Ji |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I162714631 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil, Environmental and Infrastructure Engineering, George Mason University, Fairfax, VA, USA |
| authorships[3].institutions[0].id | https://openalex.org/I162714631 |
| authorships[3].institutions[0].ror | https://ror.org/02jqj7156 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I162714631 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | George Mason University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenying Ji |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil, Environmental and Infrastructure Engineering, George Mason University, Fairfax, VA, USA |
| authorships[4].author.id | https://openalex.org/A5101288759 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Qiushi Fang |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I28407311 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK |
| authorships[4].institutions[0].id | https://openalex.org/I28407311 |
| authorships[4].institutions[0].ror | https://ror.org/027m9bs27 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I28407311 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Manchester |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Qiushi Fang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Electrical and Electronic Engineering, The University of Manchester, Manchester, UK |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.tandfonline.com/doi/pdf/10.1080/13467581.2023.2294871?needAccess=true |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A data-driven framework for conceptual cost estimation of infrastructure projects using XGBoost and Bayesian optimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9965000152587891 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W4287880334, https://openalex.org/W4366700029, https://openalex.org/W4285230481, https://openalex.org/W4385769873, https://openalex.org/W2015759683, https://openalex.org/W4281634296, https://openalex.org/W4319161863, https://openalex.org/W2371687270, https://openalex.org/W2898674639, https://openalex.org/W4311888330 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 14 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1080/13467581.2023.2294871 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S100777832 |
| best_oa_location.source.issn | 1346-7581, 1347-2852 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1346-7581 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Journal of Asian Architecture and Building Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_name | Taylor & Francis |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| best_oa_location.source.host_organization_lineage_names | Taylor & Francis |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/13467581.2023.2294871?needAccess=true |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Asian Architecture and Building Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1080/13467581.2023.2294871 |
| primary_location.id | doi:10.1080/13467581.2023.2294871 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S100777832 |
| primary_location.source.issn | 1346-7581, 1347-2852 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1346-7581 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Journal of Asian Architecture and Building Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | https://www.tandfonline.com/doi/pdf/10.1080/13467581.2023.2294871?needAccess=true |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Asian Architecture and Building Engineering |
| primary_location.landing_page_url | https://doi.org/10.1080/13467581.2023.2294871 |
| publication_date | 2024-01-04 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3037409915, https://openalex.org/W3194044608, https://openalex.org/W4362702305, https://openalex.org/W4292291633, https://openalex.org/W3191161603, https://openalex.org/W3150697952, https://openalex.org/W4382051867, https://openalex.org/W2725834909, https://openalex.org/W2861659575, https://openalex.org/W3096140803, https://openalex.org/W2295598076, https://openalex.org/W2018899885, https://openalex.org/W3010156620, https://openalex.org/W2297143647, https://openalex.org/W2980454061, https://openalex.org/W2889270531, https://openalex.org/W3162977831, https://openalex.org/W2912403940, https://openalex.org/W2745595671, https://openalex.org/W3106876954, https://openalex.org/W917774098, https://openalex.org/W2971717062, https://openalex.org/W2048423503, https://openalex.org/W4304193768, https://openalex.org/W2996033081, https://openalex.org/W3037073197, https://openalex.org/W4280587471, https://openalex.org/W3193645414, https://openalex.org/W3173593718, https://openalex.org/W2945701190, https://openalex.org/W3142222582, https://openalex.org/W3196316500, https://openalex.org/W3044450262, https://openalex.org/W4280582948, https://openalex.org/W3175916092, https://openalex.org/W2548672369, https://openalex.org/W2899750879, https://openalex.org/W1969837988, https://openalex.org/W2192203593, https://openalex.org/W3183637089, https://openalex.org/W3036792982, https://openalex.org/W3165137932, https://openalex.org/W1978939434, https://openalex.org/W2060013843, https://openalex.org/W3086242700, https://openalex.org/W2967391408, https://openalex.org/W3204731726, https://openalex.org/W4200227359, https://openalex.org/W3015176449, https://openalex.org/W2967663220, https://openalex.org/W2972701307, https://openalex.org/W4200606079, https://openalex.org/W3193962426, https://openalex.org/W2921192933, https://openalex.org/W4367675076, https://openalex.org/W4235320361 |
| referenced_works_count | 56 |
| abstract_inverted_index.a | 3, 32, 99, 161 |
| abstract_inverted_index.~ | 136, 140 |
| abstract_inverted_index.BO | 83 |
| abstract_inverted_index.It | 178 |
| abstract_inverted_index.as | 77 |
| abstract_inverted_index.by | 82 |
| abstract_inverted_index.in | 22, 84, 171, 186 |
| abstract_inverted_index.is | 2, 11, 75, 96 |
| abstract_inverted_index.it | 10 |
| abstract_inverted_index.of | 6, 26, 102, 175 |
| abstract_inverted_index.on | 119, 152 |
| abstract_inverted_index.to | 13, 50, 69, 148 |
| abstract_inverted_index.605 | 106 |
| abstract_inverted_index.MAE | 139 |
| abstract_inverted_index.The | 94, 108, 158 |
| abstract_inverted_index.and | 16, 45, 55, 64, 80, 86, 138, 155, 167, 183, 193 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.can | 115, 179 |
| abstract_inverted_index.for | 59, 163 |
| abstract_inverted_index.how | 144 |
| abstract_inverted_index.key | 4, 72 |
| abstract_inverted_index.the | 23, 57, 71, 78, 112, 126, 145, 149, 172, 181 |
| abstract_inverted_index.yet | 9 |
| abstract_inverted_index.Cost | 0 |
| abstract_inverted_index.RMSE | 135 |
| abstract_inverted_index.SHAP | 142 |
| abstract_inverted_index.This | 29 |
| abstract_inverted_index.both | 153 |
| abstract_inverted_index.case | 100 |
| abstract_inverted_index.cost | 53, 121, 150, 169 |
| abstract_inverted_index.more | 164 |
| abstract_inverted_index.plan | 194 |
| abstract_inverted_index.show | 110 |
| abstract_inverted_index.that | 34, 111 |
| abstract_inverted_index.were | 90 |
| abstract_inverted_index.(BO), | 44 |
| abstract_inverted_index.(with | 129 |
| abstract_inverted_index.Model | 88 |
| abstract_inverted_index.SHAP. | 93 |
| abstract_inverted_index.based | 151 |
| abstract_inverted_index.early | 60, 187 |
| abstract_inverted_index.local | 156 |
| abstract_inverted_index.phase | 25, 174 |
| abstract_inverted_index.study | 30, 101 |
| abstract_inverted_index.using | 19, 92 |
| abstract_inverted_index.where | 123 |
| abstract_inverted_index.(SHAP) | 49 |
| abstract_inverted_index.budget | 192 |
| abstract_inverted_index.global | 154 |
| abstract_inverted_index.models | 128 |
| abstract_inverted_index.plans, | 8 |
| abstract_inverted_index.search | 66 |
| abstract_inverted_index.select | 70 |
| abstract_inverted_index.${R^2}$ | 130, 133 |
| abstract_inverted_index.0.8690, | 137 |
| abstract_inverted_index.SHapley | 46 |
| abstract_inverted_index.XGBoost | 74 |
| abstract_inverted_index.explain | 56 |
| abstract_inverted_index.extreme | 38 |
| abstract_inverted_index.feature | 36 |
| abstract_inverted_index.forward | 65 |
| abstract_inverted_index.methods | 21 |
| abstract_inverted_index.project | 7, 184, 191 |
| abstract_inverted_index.provide | 14, 51, 116 |
| abstract_inverted_index.results | 58, 109 |
| abstract_inverted_index.reveals | 143 |
| abstract_inverted_index.support | 180 |
| abstract_inverted_index.through | 98 |
| abstract_inverted_index.0.4875). | 141 |
| abstract_inverted_index.Additive | 47 |
| abstract_inverted_index.Bayesian | 42 |
| abstract_inverted_index.accuracy | 85 |
| abstract_inverted_index.adjusted | 132 |
| abstract_inverted_index.analysis | 63 |
| abstract_inverted_index.boosting | 40 |
| abstract_inverted_index.combined | 68 |
| abstract_inverted_index.electric | 103 |
| abstract_inverted_index.enhanced | 81 |
| abstract_inverted_index.features | 146 |
| abstract_inverted_index.gradient | 39 |
| abstract_inverted_index.planners | 185 |
| abstract_inverted_index.proposed | 113 |
| abstract_inverted_index.proposes | 31 |
| abstract_inverted_index.provides | 160 |
| abstract_inverted_index.reliable | 15, 190 |
| abstract_inverted_index.samples. | 107 |
| abstract_inverted_index.~0.9549, | 134 |
| abstract_inverted_index.~0.9567, | 131 |
| abstract_inverted_index.accurate, | 165 |
| abstract_inverted_index.benchmark | 127 |
| abstract_inverted_index.component | 5 |
| abstract_inverted_index.developed | 76 |
| abstract_inverted_index.efficient | 17 |
| abstract_inverted_index.estimator | 79 |
| abstract_inverted_index.features. | 73 |
| abstract_inverted_index.framework | 33, 95, 114, 159 |
| abstract_inverted_index.guideline | 162 |
| abstract_inverted_index.including | 189 |
| abstract_inverted_index.presented | 91 |
| abstract_inverted_index.projects. | 28, 177 |
| abstract_inverted_index.(XGBoost), | 41 |
| abstract_inverted_index.BO-XGBoost | 124 |
| abstract_inverted_index.conceptual | 24, 52, 120, 173 |
| abstract_inverted_index.containing | 105 |
| abstract_inverted_index.contribute | 147 |
| abstract_inverted_index.efficient, | 166 |
| abstract_inverted_index.estimation | 1 |
| abstract_inverted_index.government | 182 |
| abstract_inverted_index.integrates | 35 |
| abstract_inverted_index.selection, | 37 |
| abstract_inverted_index.selection. | 196 |
| abstract_inverted_index.Correlation | 62 |
| abstract_inverted_index.challenging | 12 |
| abstract_inverted_index.efficiency. | 87 |
| abstract_inverted_index.estimations | 18, 54, 170 |
| abstract_inverted_index.explainable | 168 |
| abstract_inverted_index.outperforms | 125 |
| abstract_inverted_index.performance | 118 |
| abstract_inverted_index.substations | 104 |
| abstract_inverted_index.alternatives | 195 |
| abstract_inverted_index.conventional | 20 |
| abstract_inverted_index.demonstrated | 97 |
| abstract_inverted_index.estimations, | 122 |
| abstract_inverted_index.exPlanations | 48 |
| abstract_inverted_index.explanations | 89 |
| abstract_inverted_index.optimization | 43 |
| abstract_inverted_index.satisfactory | 117 |
| abstract_inverted_index.explanations. | 157 |
| abstract_inverted_index.infrastructure | 27, 176 |
| abstract_inverted_index.decision-making, | 188 |
| abstract_inverted_index.decision-making. | 61 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5015934581 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I76569877 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.95769672 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |