A database for evaluating the InMAP, APEEP, and EASIUR reduced complexity air-quality modeling tools Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1016/j.dib.2019.104886
Policy analysts and researchers often use models to translate expected emissions changes from pollution control policies to estimates of air pollution changes and resulting changes in health impacts. These models can include both photochemical Eulerian grid models or reduced complexity models; these latter models make simplifying assumptions about the emissions-to-air quality relationship as a means of reducing the computational time needed to simulate air quality. This manuscript presents a new database of photochemical- and reduced complexity-modelled changes in annual average particulate matter with aerodynamic diameter less than 2.5 μm and associated health effects and economic values for five case studies representing different emissions control scenarios. The research community is developing an increasing number of reduced complexity models as lower-cost and more expeditious alternatives to full form Eulerian photochemical grid models such as the Comprehensive Air-Quality Model with eXtensions (CAMx) and the Community Multiscale Air Quality (CMAQ) model. A comprehensive evaluation of reduced complexity models can demonstrate the extent to which these tools capture complex chemical and physical processes when representing emission control options. Systematically comparing reduced complexity model predictions to benchmarks from photochemical grid models requires a consistent set of input parameters across all systems. Developing such inputs is resource intensive and consequently the data that we have developed and shared (https://github.com/epa-kpc/RFMEVAL) provide a valuable resource for others to evaluate reduced complexity models. The dataset includes inputs and outputs representing 5 emission control scenarios, including sector-based regulatory policy scenarios focused on on-road mobile sources and electrical generating units (EGUs) as well as hypothetical across-the-board reductions to emissions from cement kilns, refineries, and pulp and paper facilities. Model inputs, outputs, and run control files are provided for the Air Pollution Emission Experiments and Policy Analysis (APEEP) version 2 and 3, Intervention Model for Air Pollution (InMAP), Estimating Air pollution Social Impact Using Regression (EASIUR), and EPA's source apportionment benefit-per-ton reduced complexity models. For comparison, photochemical grid model annual average PM2.5 output is provided for each emission scenario. Further, inputs are also provided for the Environmental Benefits and Mapping Community Edition (BenMAP-CE) tool to generate county level health benefits and monetized health damages along with output files for benchmarking and intercomparison. Monetized health impacts are also provided from EASIUR and APEEP which can provide these outside the BenMAP-CE framework. The database will allow researchers to more easily compare reduced complexity model predictions against photochemical grid model predictions.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.dib.2019.104886
- OA Status
- gold
- Cited By
- 31
- References
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2989572484
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2989572484Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.dib.2019.104886Digital Object Identifier
- Title
-
A database for evaluating the InMAP, APEEP, and EASIUR reduced complexity air-quality modeling toolsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-11-28Full publication date if available
- Authors
-
Kirk R. Baker, Meredith Amend, Stefani L. Penn, Joshua Bankert, Heather Simon, Elizabeth Chan, Neal Fann, Margaret Zawacki, K B Davidson, Henry RomanList of authors in order
- Landing page
-
https://doi.org/10.1016/j.dib.2019.104886Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.dib.2019.104886Direct OA link when available
- Concepts
-
Computer science, Database, Data science, Data miningTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
31Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 5, 2023: 5, 2022: 5, 2021: 12Per-year citation counts (last 5 years)
- References (count)
-
5Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2989572484 |
|---|---|
| doi | https://doi.org/10.1016/j.dib.2019.104886 |
| ids.doi | https://doi.org/10.1016/j.dib.2019.104886 |
| ids.mag | 2989572484 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31872009 |
| ids.openalex | https://openalex.org/W2989572484 |
| fwci | 2.16552583 |
| type | article |
| title | A database for evaluating the InMAP, APEEP, and EASIUR reduced complexity air-quality modeling tools |
| awards[0].id | https://openalex.org/G1504661463 |
| awards[0].funder_id | https://openalex.org/F4320306107 |
| awards[0].display_name | |
| awards[0].funder_award_id | EP-D-14-032 WA#4-52 |
| awards[0].funder_display_name | U.S. Environmental Protection Agency |
| biblio.issue | |
| biblio.volume | 28 |
| biblio.last_page | 104886 |
| biblio.first_page | 104886 |
| topics[0].id | https://openalex.org/T10075 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Atmospheric chemistry and aerosols |
| topics[1].id | https://openalex.org/T10190 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2307 |
| topics[1].subfield.display_name | Health, Toxicology and Mutagenesis |
| topics[1].display_name | Air Quality and Health Impacts |
| topics[2].id | https://openalex.org/T12120 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9969000220298767 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Air Quality Monitoring and Forecasting |
| funders[0].id | https://openalex.org/F4320306107 |
| funders[0].ror | https://ror.org/03tns0030 |
| funders[0].display_name | U.S. Environmental Protection Agency |
| is_xpac | False |
| apc_list.value | 700 |
| apc_list.currency | USD |
| apc_list.value_usd | 700 |
| apc_paid.value | 700 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 700 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5672327876091003 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C77088390 |
| concepts[1].level | 1 |
| concepts[1].score | 0.5215206742286682 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[1].display_name | Database |
| concepts[2].id | https://openalex.org/C2522767166 |
| concepts[2].level | 1 |
| concepts[2].score | 0.33765003085136414 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[2].display_name | Data science |
| concepts[3].id | https://openalex.org/C124101348 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3305248022079468 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[3].display_name | Data mining |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5672327876091003 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/database |
| keywords[1].score | 0.5215206742286682 |
| keywords[1].display_name | Database |
| keywords[2].id | https://openalex.org/keywords/data-science |
| keywords[2].score | 0.33765003085136414 |
| keywords[2].display_name | Data science |
| keywords[3].id | https://openalex.org/keywords/data-mining |
| keywords[3].score | 0.3305248022079468 |
| keywords[3].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.1016/j.dib.2019.104886 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2481029507 |
| locations[0].source.issn | 2352-3409 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2352-3409 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Data in Brief |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Data in Brief |
| locations[0].landing_page_url | https://doi.org/10.1016/j.dib.2019.104886 |
| locations[1].id | pmid:31872009 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Data in brief |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31872009 |
| locations[2].id | pmh:oai:europepmc.org:5877125 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400806 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Europe PMC (PubMed Central) |
| locations[2].source.host_organization | https://openalex.org/I1303153112 |
| locations[2].source.host_organization_name | European Bioinformatics Institute |
| locations[2].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6911961 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:6911961 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Data Brief |
| locations[3].landing_page_url | http://doi.org/10.1016/j.dib.2019.104886 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5064772142 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4417-6799 |
| authorships[0].author.display_name | Kirk R. Baker |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1302368450, https://openalex.org/I1309191912 |
| authorships[0].affiliations[0].raw_affiliation_string | U.S. Environmental Protection Agency, Research Triangle Park, NC, USA |
| authorships[0].institutions[0].id | https://openalex.org/I1302368450 |
| authorships[0].institutions[0].ror | https://ror.org/03tns0030 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1302368450 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Environmental Protection Agency |
| authorships[0].institutions[1].id | https://openalex.org/I1309191912 |
| authorships[0].institutions[1].ror | https://ror.org/03eqttr49 |
| authorships[0].institutions[1].type | nonprofit |
| authorships[0].institutions[1].lineage | https://openalex.org/I1309191912 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Research Triangle Park Foundation |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kirk R. Baker |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | U.S. Environmental Protection Agency, Research Triangle Park, NC, USA |
| authorships[1].author.id | https://openalex.org/A5073746094 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-8906-1058 |
| authorships[1].author.display_name | Meredith Amend |
| authorships[1].affiliations[0].raw_affiliation_string | Industrial Economics, Incorporated, Cambridge, MA, USA |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Meredith Amend |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Industrial Economics, Incorporated, Cambridge, MA, USA |
| authorships[2].author.id | https://openalex.org/A5038486169 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3196-8829 |
| authorships[2].author.display_name | Stefani L. Penn |
| authorships[2].affiliations[0].raw_affiliation_string | Industrial Economics, Incorporated, Cambridge, MA, USA |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Stefani Penn |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Industrial Economics, Incorporated, Cambridge, MA, USA |
| authorships[3].author.id | https://openalex.org/A5046269794 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Joshua Bankert |
| authorships[3].affiliations[0].raw_affiliation_string | Industrial Economics, Incorporated, Cambridge, MA, USA |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Joshua Bankert |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Industrial Economics, Incorporated, Cambridge, MA, USA |
| authorships[4].author.id | https://openalex.org/A5085901013 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7254-3360 |
| authorships[4].author.display_name | Heather Simon |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I1302368450, https://openalex.org/I1309191912 |
| authorships[4].affiliations[0].raw_affiliation_string | U.S. Environmental Protection Agency, Research Triangle Park, NC, USA |
| authorships[4].institutions[0].id | https://openalex.org/I1302368450 |
| authorships[4].institutions[0].ror | https://ror.org/03tns0030 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I1302368450 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Environmental Protection Agency |
| authorships[4].institutions[1].id | https://openalex.org/I1309191912 |
| authorships[4].institutions[1].ror | https://ror.org/03eqttr49 |
| authorships[4].institutions[1].type | nonprofit |
| authorships[4].institutions[1].lineage | https://openalex.org/I1309191912 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Research Triangle Park Foundation |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Heather Simon |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | U.S. Environmental Protection Agency, Research Triangle Park, NC, USA |
| authorships[5].author.id | https://openalex.org/A5008639269 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5602-9991 |
| authorships[5].author.display_name | Elizabeth Chan |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I1302368450, https://openalex.org/I1309191912 |
| authorships[5].affiliations[0].raw_affiliation_string | U.S. Environmental Protection Agency, Research Triangle Park, NC, USA |
| authorships[5].institutions[0].id | https://openalex.org/I1302368450 |
| authorships[5].institutions[0].ror | https://ror.org/03tns0030 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I1302368450 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Environmental Protection Agency |
| authorships[5].institutions[1].id | https://openalex.org/I1309191912 |
| authorships[5].institutions[1].ror | https://ror.org/03eqttr49 |
| authorships[5].institutions[1].type | nonprofit |
| authorships[5].institutions[1].lineage | https://openalex.org/I1309191912 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | Research Triangle Park Foundation |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Elizabeth Chan |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | U.S. Environmental Protection Agency, Research Triangle Park, NC, USA |
| authorships[6].author.id | https://openalex.org/A5045872039 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-6724-8575 |
| authorships[6].author.display_name | Neal Fann |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I1302368450, https://openalex.org/I1309191912 |
| authorships[6].affiliations[0].raw_affiliation_string | U.S. Environmental Protection Agency, Research Triangle Park, NC, USA |
| authorships[6].institutions[0].id | https://openalex.org/I1302368450 |
| authorships[6].institutions[0].ror | https://ror.org/03tns0030 |
| authorships[6].institutions[0].type | government |
| authorships[6].institutions[0].lineage | https://openalex.org/I1302368450 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Environmental Protection Agency |
| authorships[6].institutions[1].id | https://openalex.org/I1309191912 |
| authorships[6].institutions[1].ror | https://ror.org/03eqttr49 |
| authorships[6].institutions[1].type | nonprofit |
| authorships[6].institutions[1].lineage | https://openalex.org/I1309191912 |
| authorships[6].institutions[1].country_code | US |
| authorships[6].institutions[1].display_name | Research Triangle Park Foundation |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Neal Fann |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | U.S. Environmental Protection Agency, Research Triangle Park, NC, USA |
| authorships[7].author.id | https://openalex.org/A5036363148 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Margaret Zawacki |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I1302368450 |
| authorships[7].affiliations[0].raw_affiliation_string | U.S. Environmental Protection Agency, Ann Arbor, MI, USA |
| authorships[7].institutions[0].id | https://openalex.org/I1302368450 |
| authorships[7].institutions[0].ror | https://ror.org/03tns0030 |
| authorships[7].institutions[0].type | government |
| authorships[7].institutions[0].lineage | https://openalex.org/I1302368450 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Environmental Protection Agency |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Margaret Zawacki |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | U.S. Environmental Protection Agency, Ann Arbor, MI, USA |
| authorships[8].author.id | https://openalex.org/A5014667884 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | K B Davidson |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I1302368450 |
| authorships[8].affiliations[0].raw_affiliation_string | U.S. Environmental Protection Agency, Ann Arbor, MI, USA |
| authorships[8].institutions[0].id | https://openalex.org/I1302368450 |
| authorships[8].institutions[0].ror | https://ror.org/03tns0030 |
| authorships[8].institutions[0].type | government |
| authorships[8].institutions[0].lineage | https://openalex.org/I1302368450 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Environmental Protection Agency |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Ken Davidson |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | U.S. Environmental Protection Agency, Ann Arbor, MI, USA |
| authorships[9].author.id | https://openalex.org/A5027162586 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-0660-8012 |
| authorships[9].author.display_name | Henry Roman |
| authorships[9].affiliations[0].raw_affiliation_string | Industrial Economics, Incorporated, Cambridge, MA, USA |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Henry Roman |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Industrial Economics, Incorporated, Cambridge, MA, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.dib.2019.104886 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A database for evaluating the InMAP, APEEP, and EASIUR reduced complexity air-quality modeling tools |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10075 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Atmospheric chemistry and aerosols |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 31 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 5 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 12 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| counts_by_year[6].year | 2013 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1016/j.dib.2019.104886 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2481029507 |
| best_oa_location.source.issn | 2352-3409 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2352-3409 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Data in Brief |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Data in Brief |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.dib.2019.104886 |
| primary_location.id | doi:10.1016/j.dib.2019.104886 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2481029507 |
| primary_location.source.issn | 2352-3409 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2352-3409 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Data in Brief |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Data in Brief |
| primary_location.landing_page_url | https://doi.org/10.1016/j.dib.2019.104886 |
| publication_date | 2019-11-28 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2605896263, https://openalex.org/W4298385926, https://openalex.org/W2093365828, https://openalex.org/W2050393018, https://openalex.org/W2886087828 |
| referenced_works_count | 5 |
| abstract_inverted_index.2 | 286 |
| abstract_inverted_index.5 | 230 |
| abstract_inverted_index.A | 147 |
| abstract_inverted_index.a | 53, 68, 186, 213 |
| abstract_inverted_index.3, | 288 |
| abstract_inverted_index.an | 110 |
| abstract_inverted_index.as | 52, 117, 131, 249, 251 |
| abstract_inverted_index.in | 25, 77 |
| abstract_inverted_index.is | 108, 198, 320 |
| abstract_inverted_index.of | 18, 55, 71, 113, 150, 189 |
| abstract_inverted_index.on | 240 |
| abstract_inverted_index.or | 37 |
| abstract_inverted_index.to | 7, 16, 61, 123, 158, 179, 218, 255, 341, 382 |
| abstract_inverted_index.we | 206 |
| abstract_inverted_index.2.5 | 87 |
| abstract_inverted_index.Air | 143, 277, 292, 296 |
| abstract_inverted_index.For | 311 |
| abstract_inverted_index.The | 105, 223, 377 |
| abstract_inverted_index.air | 19, 63 |
| abstract_inverted_index.all | 193 |
| abstract_inverted_index.and | 2, 22, 73, 89, 93, 119, 139, 165, 201, 209, 227, 244, 261, 263, 269, 281, 287, 303, 335, 347, 357, 367 |
| abstract_inverted_index.are | 273, 328, 362 |
| abstract_inverted_index.can | 30, 154, 370 |
| abstract_inverted_index.for | 96, 216, 275, 291, 322, 331, 355 |
| abstract_inverted_index.new | 69 |
| abstract_inverted_index.run | 270 |
| abstract_inverted_index.set | 188 |
| abstract_inverted_index.the | 48, 57, 132, 140, 156, 203, 276, 332, 374 |
| abstract_inverted_index.use | 5 |
| abstract_inverted_index.μm | 88 |
| abstract_inverted_index.This | 65 |
| abstract_inverted_index.also | 329, 363 |
| abstract_inverted_index.both | 32 |
| abstract_inverted_index.case | 98 |
| abstract_inverted_index.data | 204 |
| abstract_inverted_index.each | 323 |
| abstract_inverted_index.five | 97 |
| abstract_inverted_index.form | 125 |
| abstract_inverted_index.from | 12, 181, 257, 365 |
| abstract_inverted_index.full | 124 |
| abstract_inverted_index.grid | 35, 128, 183, 314, 392 |
| abstract_inverted_index.have | 207 |
| abstract_inverted_index.less | 85 |
| abstract_inverted_index.make | 44 |
| abstract_inverted_index.more | 120, 383 |
| abstract_inverted_index.pulp | 262 |
| abstract_inverted_index.such | 130, 196 |
| abstract_inverted_index.than | 86 |
| abstract_inverted_index.that | 205 |
| abstract_inverted_index.time | 59 |
| abstract_inverted_index.tool | 340 |
| abstract_inverted_index.well | 250 |
| abstract_inverted_index.when | 168 |
| abstract_inverted_index.will | 379 |
| abstract_inverted_index.with | 82, 136, 352 |
| abstract_inverted_index.APEEP | 368 |
| abstract_inverted_index.EPA's | 304 |
| abstract_inverted_index.Model | 135, 266, 290 |
| abstract_inverted_index.These | 28 |
| abstract_inverted_index.Using | 300 |
| abstract_inverted_index.about | 47 |
| abstract_inverted_index.allow | 380 |
| abstract_inverted_index.along | 351 |
| abstract_inverted_index.files | 272, 354 |
| abstract_inverted_index.input | 190 |
| abstract_inverted_index.level | 344 |
| abstract_inverted_index.means | 54 |
| abstract_inverted_index.model | 177, 315, 388, 393 |
| abstract_inverted_index.often | 4 |
| abstract_inverted_index.paper | 264 |
| abstract_inverted_index.these | 41, 160, 372 |
| abstract_inverted_index.tools | 161 |
| abstract_inverted_index.units | 247 |
| abstract_inverted_index.which | 159, 369 |
| abstract_inverted_index.(CAMx) | 138 |
| abstract_inverted_index.(CMAQ) | 145 |
| abstract_inverted_index.(EGUs) | 248 |
| abstract_inverted_index.EASIUR | 366 |
| abstract_inverted_index.Impact | 299 |
| abstract_inverted_index.Policy | 0, 282 |
| abstract_inverted_index.Social | 298 |
| abstract_inverted_index.across | 192 |
| abstract_inverted_index.annual | 78, 316 |
| abstract_inverted_index.cement | 258 |
| abstract_inverted_index.county | 343 |
| abstract_inverted_index.easily | 384 |
| abstract_inverted_index.extent | 157 |
| abstract_inverted_index.health | 26, 91, 345, 349, 360 |
| abstract_inverted_index.inputs | 197, 226, 327 |
| abstract_inverted_index.kilns, | 259 |
| abstract_inverted_index.latter | 42 |
| abstract_inverted_index.matter | 81 |
| abstract_inverted_index.mobile | 242 |
| abstract_inverted_index.model. | 146 |
| abstract_inverted_index.models | 6, 29, 36, 43, 116, 129, 153, 184 |
| abstract_inverted_index.needed | 60 |
| abstract_inverted_index.number | 112 |
| abstract_inverted_index.others | 217 |
| abstract_inverted_index.output | 319, 353 |
| abstract_inverted_index.policy | 237 |
| abstract_inverted_index.shared | 210 |
| abstract_inverted_index.source | 305 |
| abstract_inverted_index.values | 95 |
| abstract_inverted_index.(APEEP) | 284 |
| abstract_inverted_index.Edition | 338 |
| abstract_inverted_index.Mapping | 336 |
| abstract_inverted_index.Quality | 144 |
| abstract_inverted_index.against | 390 |
| abstract_inverted_index.average | 79, 317 |
| abstract_inverted_index.capture | 162 |
| abstract_inverted_index.changes | 11, 21, 24, 76 |
| abstract_inverted_index.compare | 385 |
| abstract_inverted_index.complex | 163 |
| abstract_inverted_index.control | 14, 103, 171, 232, 271 |
| abstract_inverted_index.damages | 350 |
| abstract_inverted_index.dataset | 224 |
| abstract_inverted_index.effects | 92 |
| abstract_inverted_index.focused | 239 |
| abstract_inverted_index.impacts | 361 |
| abstract_inverted_index.include | 31 |
| abstract_inverted_index.inputs, | 267 |
| abstract_inverted_index.models. | 222, 310 |
| abstract_inverted_index.models; | 40 |
| abstract_inverted_index.on-road | 241 |
| abstract_inverted_index.outputs | 228 |
| abstract_inverted_index.outside | 373 |
| abstract_inverted_index.provide | 212, 371 |
| abstract_inverted_index.quality | 50 |
| abstract_inverted_index.reduced | 38, 74, 114, 151, 175, 220, 308, 386 |
| abstract_inverted_index.sources | 243 |
| abstract_inverted_index.studies | 99 |
| abstract_inverted_index.version | 285 |
| abstract_inverted_index.(InMAP), | 294 |
| abstract_inverted_index.Analysis | 283 |
| abstract_inverted_index.Benefits | 334 |
| abstract_inverted_index.Emission | 279 |
| abstract_inverted_index.Eulerian | 34, 126 |
| abstract_inverted_index.Further, | 326 |
| abstract_inverted_index.analysts | 1 |
| abstract_inverted_index.benefits | 346 |
| abstract_inverted_index.chemical | 164 |
| abstract_inverted_index.database | 70, 378 |
| abstract_inverted_index.diameter | 84 |
| abstract_inverted_index.economic | 94 |
| abstract_inverted_index.emission | 170, 231, 324 |
| abstract_inverted_index.evaluate | 219 |
| abstract_inverted_index.expected | 9 |
| abstract_inverted_index.generate | 342 |
| abstract_inverted_index.impacts. | 27 |
| abstract_inverted_index.includes | 225 |
| abstract_inverted_index.options. | 172 |
| abstract_inverted_index.outputs, | 268 |
| abstract_inverted_index.physical | 166 |
| abstract_inverted_index.policies | 15 |
| abstract_inverted_index.presents | 67 |
| abstract_inverted_index.provided | 274, 321, 330, 364 |
| abstract_inverted_index.quality. | 64 |
| abstract_inverted_index.reducing | 56 |
| abstract_inverted_index.requires | 185 |
| abstract_inverted_index.research | 106 |
| abstract_inverted_index.resource | 199, 215 |
| abstract_inverted_index.simulate | 62 |
| abstract_inverted_index.systems. | 194 |
| abstract_inverted_index.valuable | 214 |
| abstract_inverted_index.(EASIUR), | 302 |
| abstract_inverted_index.BenMAP-CE | 375 |
| abstract_inverted_index.Community | 141, 337 |
| abstract_inverted_index.Monetized | 359 |
| abstract_inverted_index.Pollution | 278, 293 |
| abstract_inverted_index.community | 107 |
| abstract_inverted_index.comparing | 174 |
| abstract_inverted_index.developed | 208 |
| abstract_inverted_index.different | 101 |
| abstract_inverted_index.emissions | 10, 102, 256 |
| abstract_inverted_index.estimates | 17 |
| abstract_inverted_index.including | 234 |
| abstract_inverted_index.intensive | 200 |
| abstract_inverted_index.monetized | 348 |
| abstract_inverted_index.pollution | 13, 20, 297 |
| abstract_inverted_index.processes | 167 |
| abstract_inverted_index.resulting | 23 |
| abstract_inverted_index.scenario. | 325 |
| abstract_inverted_index.scenarios | 238 |
| abstract_inverted_index.translate | 8 |
| abstract_inverted_index.Developing | 195 |
| abstract_inverted_index.Estimating | 295 |
| abstract_inverted_index.Multiscale | 142 |
| abstract_inverted_index.Regression | 301 |
| abstract_inverted_index.associated | 90 |
| abstract_inverted_index.benchmarks | 180 |
| abstract_inverted_index.complexity | 39, 115, 152, 176, 221, 309, 387 |
| abstract_inverted_index.consistent | 187 |
| abstract_inverted_index.developing | 109 |
| abstract_inverted_index.eXtensions | 137 |
| abstract_inverted_index.electrical | 245 |
| abstract_inverted_index.evaluation | 149 |
| abstract_inverted_index.framework. | 376 |
| abstract_inverted_index.generating | 246 |
| abstract_inverted_index.increasing | 111 |
| abstract_inverted_index.lower-cost | 118 |
| abstract_inverted_index.manuscript | 66 |
| abstract_inverted_index.parameters | 191 |
| abstract_inverted_index.reductions | 254 |
| abstract_inverted_index.regulatory | 236 |
| abstract_inverted_index.scenarios, | 233 |
| abstract_inverted_index.scenarios. | 104 |
| abstract_inverted_index.(BenMAP-CE) | 339 |
| abstract_inverted_index.Air-Quality | 134 |
| abstract_inverted_index.Experiments | 280 |
| abstract_inverted_index.aerodynamic | 83 |
| abstract_inverted_index.assumptions | 46 |
| abstract_inverted_index.comparison, | 312 |
| abstract_inverted_index.demonstrate | 155 |
| abstract_inverted_index.expeditious | 121 |
| abstract_inverted_index.facilities. | 265 |
| abstract_inverted_index.particulate | 80 |
| abstract_inverted_index.predictions | 178, 389 |
| abstract_inverted_index.refineries, | 260 |
| abstract_inverted_index.researchers | 3, 381 |
| abstract_inverted_index.simplifying | 45 |
| abstract_inverted_index.Intervention | 289 |
| abstract_inverted_index.alternatives | 122 |
| abstract_inverted_index.benchmarking | 356 |
| abstract_inverted_index.consequently | 202 |
| abstract_inverted_index.hypothetical | 252 |
| abstract_inverted_index.predictions. | 394 |
| abstract_inverted_index.relationship | 51 |
| abstract_inverted_index.representing | 100, 169, 229 |
| abstract_inverted_index.sector-based | 235 |
| abstract_inverted_index.Comprehensive | 133 |
| abstract_inverted_index.Environmental | 333 |
| abstract_inverted_index.apportionment | 306 |
| abstract_inverted_index.comprehensive | 148 |
| abstract_inverted_index.computational | 58 |
| abstract_inverted_index.photochemical | 33, 127, 182, 313, 391 |
| abstract_inverted_index.Systematically | 173 |
| abstract_inverted_index.photochemical- | 72 |
| abstract_inverted_index.benefit-per-ton | 307 |
| abstract_inverted_index.PM<sub>2.5</sub> | 318 |
| abstract_inverted_index.across-the-board | 253 |
| abstract_inverted_index.emissions-to-air | 49 |
| abstract_inverted_index.intercomparison. | 358 |
| abstract_inverted_index.complexity-modelled | 75 |
| abstract_inverted_index.(https://github.com/epa-kpc/RFMEVAL) | 211 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5064772142 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I1302368450, https://openalex.org/I1309191912 |
| citation_normalized_percentile.value | 0.88299567 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |