A database of thermally activated delayed fluorescent molecules auto-generated from scientific literature with ChemDataExtractor Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1038/s41597-023-02897-3
A database of thermally activated delayed fluorescent (TADF) molecules was automatically generated from the scientific literature. It consists of 25,482 data records with an overall precision of 82%. Among these, 5,349 records have chemical names in the form of SMILES strings which are represented with 91% accuracy; these are grouped in a subsidiary database. Each data record contains one of the following four properties: maximum emission wavelength ( λ EM ), photoluminescence quantum yield (PLQY), singlet-triplet energy splitting (Δ E ST ), and delayed lifetime ( τ D ). The databases were created through text mining using ChemDataExtractor, a chemistry-aware natural-language-processing toolkit, which has been adapted for TADF research. The text-mined corpus consisted of 2,733 papers from the Royal Society of Chemistry and Elsevier. To the best of our knowledge, these databases are the first databases that have been auto-generated for TADF molecules from existing publications. The databases have been publicly released for experimental and computational applications in the TADF research field.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41597-023-02897-3
- https://www.nature.com/articles/s41597-023-02897-3.pdf
- OA Status
- gold
- Cited By
- 14
- References
- 30
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390951820
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390951820Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41597-023-02897-3Digital Object Identifier
- Title
-
A database of thermally activated delayed fluorescent molecules auto-generated from scientific literature with ChemDataExtractorWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-17Full publication date if available
- Authors
-
Dingyun Huang, Jacqueline M. ColeList of authors in order
- Landing page
-
https://doi.org/10.1038/s41597-023-02897-3Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41597-023-02897-3.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41597-023-02897-3.pdfDirect OA link when available
- Concepts
-
Fluorescence, Chemistry, Database, Computer science, Physics, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
30Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390951820 |
|---|---|
| doi | https://doi.org/10.1038/s41597-023-02897-3 |
| ids.doi | https://doi.org/10.1038/s41597-023-02897-3 |
| ids.openalex | https://openalex.org/W4390951820 |
| fwci | 2.37081845 |
| type | article |
| title | A database of thermally activated delayed fluorescent molecules auto-generated from scientific literature with ChemDataExtractor |
| awards[0].id | https://openalex.org/G1531024995 |
| awards[0].funder_id | https://openalex.org/F4320320005 |
| awards[0].funder_award_id | RCSRF1819\7\10 |
| awards[0].funder_display_name | Royal Academy of Engineering |
| biblio.issue | 1 |
| biblio.volume | 11 |
| biblio.last_page | |
| biblio.first_page | |
| grants[0].funder | https://openalex.org/F4320320005 |
| grants[0].award_id | RCSRF1819\7\10 |
| grants[0].funder_display_name | Royal Academy of Engineering |
| grants[1].funder | https://openalex.org/F4320322725 |
| grants[1].award_id | |
| grants[1].funder_display_name | China Scholarship Council |
| topics[0].id | https://openalex.org/T11948 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Machine Learning in Materials Science |
| topics[1].id | https://openalex.org/T11407 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9952999949455261 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Innovative Microfluidic and Catalytic Techniques Innovation |
| topics[2].id | https://openalex.org/T10211 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9897000193595886 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Computational Drug Discovery Methods |
| funders[0].id | https://openalex.org/F4320320005 |
| funders[0].ror | https://ror.org/0526snb40 |
| funders[0].display_name | Royal Academy of Engineering |
| funders[1].id | https://openalex.org/F4320322725 |
| funders[1].ror | https://ror.org/04atp4p48 |
| funders[1].display_name | China Scholarship Council |
| is_xpac | False |
| apc_list.value | 1990 |
| apc_list.currency | USD |
| apc_list.value_usd | 1990 |
| apc_paid.value | 1990 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1990 |
| concepts[0].id | https://openalex.org/C91881484 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6398279070854187 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q191807 |
| concepts[0].display_name | Fluorescence |
| concepts[1].id | https://openalex.org/C185592680 |
| concepts[1].level | 0 |
| concepts[1].score | 0.40486493706703186 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[1].display_name | Chemistry |
| concepts[2].id | https://openalex.org/C77088390 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3537769913673401 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[2].display_name | Database |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.28623726963996887 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C121332964 |
| concepts[4].level | 0 |
| concepts[4].score | 0.10336744785308838 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[4].display_name | Physics |
| concepts[5].id | https://openalex.org/C62520636 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[5].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/fluorescence |
| keywords[0].score | 0.6398279070854187 |
| keywords[0].display_name | Fluorescence |
| keywords[1].id | https://openalex.org/keywords/chemistry |
| keywords[1].score | 0.40486493706703186 |
| keywords[1].display_name | Chemistry |
| keywords[2].id | https://openalex.org/keywords/database |
| keywords[2].score | 0.3537769913673401 |
| keywords[2].display_name | Database |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.28623726963996887 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/physics |
| keywords[4].score | 0.10336744785308838 |
| keywords[4].display_name | Physics |
| language | en |
| locations[0].id | doi:10.1038/s41597-023-02897-3 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2607323502 |
| locations[0].source.issn | 2052-4463 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2052-4463 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Data |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.nature.com/articles/s41597-023-02897-3.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Data |
| locations[0].landing_page_url | https://doi.org/10.1038/s41597-023-02897-3 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:10794197 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | cc-by |
| locations[1].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10794197/pdf/41597_2023_Article_2897.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Sci Data |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10794197 |
| locations[2].id | pmh:oai:osti.gov:2469489 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306402487 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) |
| locations[2].source.host_organization | https://openalex.org/I139351228 |
| locations[2].source.host_organization_name | Office of Scientific and Technical Information |
| locations[2].source.host_organization_lineage | https://openalex.org/I139351228 |
| locations[2].license | |
| locations[2].pdf_url | https://www.osti.gov/biblio/2469489 |
| locations[2].version | submittedVersion |
| locations[2].raw_type | |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://www.osti.gov/biblio/2469489 |
| locations[3].id | pmh:oai:purl.org/net/epubs:work/56695840 |
| locations[3].is_oa | True |
| locations[3].source | |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | http://purl.org/net/epubs/work/56695840 |
| locations[4].id | pmh:oai:doaj.org/article:2f44d4910f5646838c342631d4f01acf |
| locations[4].is_oa | False |
| locations[4].source.id | https://openalex.org/S4306401280 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].source.host_organization_lineage | |
| locations[4].license | |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | article |
| locations[4].license_id | |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Scientific Data, Vol 11, Iss 1, Pp 1-9 (2024) |
| locations[4].landing_page_url | https://doaj.org/article/2f44d4910f5646838c342631d4f01acf |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5009496954 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4974-4214 |
| authorships[0].author.display_name | Dingyun Huang |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[0].affiliations[0].raw_affiliation_string | Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK |
| authorships[0].institutions[0].id | https://openalex.org/I241749 |
| authorships[0].institutions[0].ror | https://ror.org/013meh722 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Cambridge |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dingyun Huang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK |
| authorships[1].author.id | https://openalex.org/A5068607578 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1552-8743 |
| authorships[1].author.display_name | Jacqueline M. Cole |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[1].affiliations[0].raw_affiliation_string | Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK |
| authorships[1].institutions[0].id | https://openalex.org/I241749 |
| authorships[1].institutions[0].ror | https://ror.org/013meh722 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University of Cambridge |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jacqueline M. Cole |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41597-023-02897-3.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A database of thermally activated delayed fluorescent molecules auto-generated from scientific literature with ChemDataExtractor |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11948 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Machine Learning in Materials Science |
| related_works | https://openalex.org/W4387497383, https://openalex.org/W2948807893, https://openalex.org/W2899084033, https://openalex.org/W2778153218, https://openalex.org/W2748952813, https://openalex.org/W1531601525, https://openalex.org/W4391375266, https://openalex.org/W2078814861, https://openalex.org/W2527526854, https://openalex.org/W1976181487 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.1038/s41597-023-02897-3 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2607323502 |
| best_oa_location.source.issn | 2052-4463 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2052-4463 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Data |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41597-023-02897-3.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Data |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41597-023-02897-3 |
| primary_location.id | doi:10.1038/s41597-023-02897-3 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2607323502 |
| primary_location.source.issn | 2052-4463 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2052-4463 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Data |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.nature.com/articles/s41597-023-02897-3.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Data |
| primary_location.landing_page_url | https://doi.org/10.1038/s41597-023-02897-3 |
| publication_date | 2024-01-17 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3129691336, https://openalex.org/W3022319819, https://openalex.org/W2592323822, https://openalex.org/W3006937107, https://openalex.org/W2806275814, https://openalex.org/W1992985800, https://openalex.org/W2123306226, https://openalex.org/W2478294658, https://openalex.org/W4280639759, https://openalex.org/W2523785361, https://openalex.org/W3200122731, https://openalex.org/W4214535912, https://openalex.org/W4307139584, https://openalex.org/W2808304511, https://openalex.org/W4283074682, https://openalex.org/W4225409008, https://openalex.org/W3047398431, https://openalex.org/W4281617541, https://openalex.org/W4225378608, https://openalex.org/W3199148417, https://openalex.org/W4280555259, https://openalex.org/W1991154713, https://openalex.org/W3201869313, https://openalex.org/W2034354062, https://openalex.org/W4394092748, https://openalex.org/W2982313800, https://openalex.org/W3036413333, https://openalex.org/W4295762974, https://openalex.org/W2972023840, https://openalex.org/W3100824689 |
| referenced_works_count | 30 |
| abstract_inverted_index.( | 68, 86 |
| abstract_inverted_index.A | 1 |
| abstract_inverted_index.D | 88 |
| abstract_inverted_index.E | 80 |
| abstract_inverted_index.a | 52, 99 |
| abstract_inverted_index.), | 71, 82 |
| abstract_inverted_index.). | 89 |
| abstract_inverted_index.EM | 70 |
| abstract_inverted_index.It | 17 |
| abstract_inverted_index.ST | 81 |
| abstract_inverted_index.To | 125 |
| abstract_inverted_index.an | 24 |
| abstract_inverted_index.in | 36, 51, 158 |
| abstract_inverted_index.of | 3, 19, 27, 39, 60, 114, 121, 128 |
| abstract_inverted_index.λ | 69 |
| abstract_inverted_index.τ | 87 |
| abstract_inverted_index.(Δ | 79 |
| abstract_inverted_index.91% | 46 |
| abstract_inverted_index.The | 90, 110, 147 |
| abstract_inverted_index.and | 83, 123, 155 |
| abstract_inverted_index.are | 43, 49, 133 |
| abstract_inverted_index.for | 107, 141, 153 |
| abstract_inverted_index.has | 104 |
| abstract_inverted_index.one | 59 |
| abstract_inverted_index.our | 129 |
| abstract_inverted_index.the | 14, 37, 61, 118, 126, 134, 159 |
| abstract_inverted_index.was | 10 |
| abstract_inverted_index.82%. | 28 |
| abstract_inverted_index.Each | 55 |
| abstract_inverted_index.TADF | 108, 142, 160 |
| abstract_inverted_index.been | 105, 139, 150 |
| abstract_inverted_index.best | 127 |
| abstract_inverted_index.data | 21, 56 |
| abstract_inverted_index.form | 38 |
| abstract_inverted_index.four | 63 |
| abstract_inverted_index.from | 13, 117, 144 |
| abstract_inverted_index.have | 33, 138, 149 |
| abstract_inverted_index.text | 95 |
| abstract_inverted_index.that | 137 |
| abstract_inverted_index.were | 92 |
| abstract_inverted_index.with | 23, 45 |
| abstract_inverted_index.2,733 | 115 |
| abstract_inverted_index.5,349 | 31 |
| abstract_inverted_index.Among | 29 |
| abstract_inverted_index.Royal | 119 |
| abstract_inverted_index.first | 135 |
| abstract_inverted_index.names | 35 |
| abstract_inverted_index.these | 48, 131 |
| abstract_inverted_index.using | 97 |
| abstract_inverted_index.which | 42, 103 |
| abstract_inverted_index.yield | 74 |
| abstract_inverted_index.(TADF) | 8 |
| abstract_inverted_index.25,482 | 20 |
| abstract_inverted_index.SMILES | 40 |
| abstract_inverted_index.corpus | 112 |
| abstract_inverted_index.energy | 77 |
| abstract_inverted_index.field. | 162 |
| abstract_inverted_index.mining | 96 |
| abstract_inverted_index.papers | 116 |
| abstract_inverted_index.record | 57 |
| abstract_inverted_index.these, | 30 |
| abstract_inverted_index.(PLQY), | 75 |
| abstract_inverted_index.Society | 120 |
| abstract_inverted_index.adapted | 106 |
| abstract_inverted_index.created | 93 |
| abstract_inverted_index.delayed | 6, 84 |
| abstract_inverted_index.grouped | 50 |
| abstract_inverted_index.maximum | 65 |
| abstract_inverted_index.overall | 25 |
| abstract_inverted_index.quantum | 73 |
| abstract_inverted_index.records | 22, 32 |
| abstract_inverted_index.strings | 41 |
| abstract_inverted_index.through | 94 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.chemical | 34 |
| abstract_inverted_index.consists | 18 |
| abstract_inverted_index.contains | 58 |
| abstract_inverted_index.database | 2 |
| abstract_inverted_index.emission | 66 |
| abstract_inverted_index.existing | 145 |
| abstract_inverted_index.lifetime | 85 |
| abstract_inverted_index.publicly | 151 |
| abstract_inverted_index.released | 152 |
| abstract_inverted_index.research | 161 |
| abstract_inverted_index.toolkit, | 102 |
| abstract_inverted_index.Chemistry | 122 |
| abstract_inverted_index.Elsevier. | 124 |
| abstract_inverted_index.accuracy; | 47 |
| abstract_inverted_index.activated | 5 |
| abstract_inverted_index.consisted | 113 |
| abstract_inverted_index.database. | 54 |
| abstract_inverted_index.databases | 91, 132, 136, 148 |
| abstract_inverted_index.following | 62 |
| abstract_inverted_index.generated | 12 |
| abstract_inverted_index.molecules | 9, 143 |
| abstract_inverted_index.precision | 26 |
| abstract_inverted_index.research. | 109 |
| abstract_inverted_index.splitting | 78 |
| abstract_inverted_index.thermally | 4 |
| abstract_inverted_index.knowledge, | 130 |
| abstract_inverted_index.scientific | 15 |
| abstract_inverted_index.subsidiary | 53 |
| abstract_inverted_index.text-mined | 111 |
| abstract_inverted_index.wavelength | 67 |
| abstract_inverted_index.fluorescent | 7 |
| abstract_inverted_index.literature. | 16 |
| abstract_inverted_index.properties: | 64 |
| abstract_inverted_index.represented | 44 |
| abstract_inverted_index.applications | 157 |
| abstract_inverted_index.experimental | 154 |
| abstract_inverted_index.automatically | 11 |
| abstract_inverted_index.computational | 156 |
| abstract_inverted_index.publications. | 146 |
| abstract_inverted_index.auto-generated | 140 |
| abstract_inverted_index.chemistry-aware | 100 |
| abstract_inverted_index.singlet-triplet | 76 |
| abstract_inverted_index.photoluminescence | 72 |
| abstract_inverted_index.ChemDataExtractor, | 98 |
| abstract_inverted_index.natural-language-processing | 101 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.91180763 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |