A Decentralized Root Cause Localization Approach for Edge Computing Environments Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2511.12486
Edge computing environments host increasingly complex microservice-based IoT applications, which are prone to performance anomalies that can propagate across dependent services. Identifying the true source of such anomalies, known as Root Cause Localization (RCL), is essential for timely mitigation. However, existing RCL approaches are designed for cloud environments and rely on centralized analysis, which increases latency and communication overhead when applied at the edge. This paper proposes a decentralized RCL approach that executes localization directly at the edge device level using the Personalized PageRank (PPR) algorithm. The proposed method first groups microservices into communication- and colocation-aware clusters, thereby confining most anomaly propagation within cluster boundaries. Within each cluster, PPR is executed locally to identify the root cause, significantly reducing localization time. For the rare cases where anomalies propagate across clusters, we introduce an inter-cluster peer-to-peer approximation process, enabling lightweight coordination among clusters with minimal communication overhead. To enhance the accuracy of localization in heterogeneous edge environments, we also propose a novel anomaly scoring mechanism tailored to the diverse anomaly triggers that arise across microservice, device, and network layers. Evaluation results on the publicly available edge dataset, MicroCERCL, demonstrate that the proposed decentralized approach achieves comparable or higher localization accuracy than its centralized counterpart while reducing localization time by up to 34%. These findings highlight that decentralized graph-based RCL can provide a practical and efficient solution for anomaly diagnosis in resource-constrained edge environments.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2511.12486
- https://arxiv.org/pdf/2511.12486
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416355287
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416355287Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2511.12486Digital Object Identifier
- Title
-
A Decentralized Root Cause Localization Approach for Edge Computing EnvironmentsWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-11-16Full publication date if available
- Authors
-
Duneesha Fernando, Maria A. Rodriguez, Rajkumar BuyyaList of authors in order
- Landing page
-
https://arxiv.org/abs/2511.12486Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2511.12486Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2511.12486Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416355287 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2511.12486 |
| ids.doi | https://doi.org/10.48550/arxiv.2511.12486 |
| ids.openalex | https://openalex.org/W4416355287 |
| fwci | |
| type | preprint |
| title | A Decentralized Root Cause Localization Approach for Edge Computing Environments |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2511.12486 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2511.12486 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2511.12486 |
| locations[1].id | doi:10.48550/arxiv.2511.12486 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2511.12486 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5113152201 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4156-6695 |
| authorships[0].author.display_name | Duneesha Fernando |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fernando, Duneesha |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032796449 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2831-8526 |
| authorships[1].author.display_name | Maria A. Rodriguez |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Rodriguez, Maria A. |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5014716105 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9754-6496 |
| authorships[2].author.display_name | Rajkumar Buyya |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Buyya, Rajkumar |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2511.12486 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-11-19T00:00:00 |
| display_name | A Decentralized Root Cause Localization Approach for Edge Computing Environments |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T12:00:00.322867 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2511.12486 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2511.12486 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2511.12486 |
| primary_location.id | pmh:oai:arXiv.org:2511.12486 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2511.12486 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2511.12486 |
| publication_date | 2025-11-16 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 67, 159, 220 |
| abstract_inverted_index.To | 146 |
| abstract_inverted_index.an | 132 |
| abstract_inverted_index.as | 29 |
| abstract_inverted_index.at | 61, 75 |
| abstract_inverted_index.by | 207 |
| abstract_inverted_index.in | 152, 228 |
| abstract_inverted_index.is | 34, 109 |
| abstract_inverted_index.of | 25, 150 |
| abstract_inverted_index.on | 50, 180 |
| abstract_inverted_index.or | 195 |
| abstract_inverted_index.to | 12, 112, 165, 209 |
| abstract_inverted_index.up | 208 |
| abstract_inverted_index.we | 130, 156 |
| abstract_inverted_index.For | 121 |
| abstract_inverted_index.IoT | 7 |
| abstract_inverted_index.PPR | 108 |
| abstract_inverted_index.RCL | 41, 69, 217 |
| abstract_inverted_index.The | 86 |
| abstract_inverted_index.and | 48, 56, 94, 175, 222 |
| abstract_inverted_index.are | 10, 43 |
| abstract_inverted_index.can | 16, 218 |
| abstract_inverted_index.for | 36, 45, 225 |
| abstract_inverted_index.its | 200 |
| abstract_inverted_index.the | 22, 62, 76, 81, 114, 122, 148, 166, 181, 189 |
| abstract_inverted_index.34%. | 210 |
| abstract_inverted_index.Edge | 0 |
| abstract_inverted_index.Root | 30 |
| abstract_inverted_index.This | 64 |
| abstract_inverted_index.also | 157 |
| abstract_inverted_index.each | 106 |
| abstract_inverted_index.edge | 77, 154, 184, 230 |
| abstract_inverted_index.host | 3 |
| abstract_inverted_index.into | 92 |
| abstract_inverted_index.most | 99 |
| abstract_inverted_index.rare | 123 |
| abstract_inverted_index.rely | 49 |
| abstract_inverted_index.root | 115 |
| abstract_inverted_index.such | 26 |
| abstract_inverted_index.than | 199 |
| abstract_inverted_index.that | 15, 71, 170, 188, 214 |
| abstract_inverted_index.time | 206 |
| abstract_inverted_index.true | 23 |
| abstract_inverted_index.when | 59 |
| abstract_inverted_index.with | 142 |
| abstract_inverted_index.(PPR) | 84 |
| abstract_inverted_index.Cause | 31 |
| abstract_inverted_index.These | 211 |
| abstract_inverted_index.among | 140 |
| abstract_inverted_index.arise | 171 |
| abstract_inverted_index.cases | 124 |
| abstract_inverted_index.cloud | 46 |
| abstract_inverted_index.edge. | 63 |
| abstract_inverted_index.first | 89 |
| abstract_inverted_index.known | 28 |
| abstract_inverted_index.level | 79 |
| abstract_inverted_index.novel | 160 |
| abstract_inverted_index.paper | 65 |
| abstract_inverted_index.prone | 11 |
| abstract_inverted_index.time. | 120 |
| abstract_inverted_index.using | 80 |
| abstract_inverted_index.where | 125 |
| abstract_inverted_index.which | 9, 53 |
| abstract_inverted_index.while | 203 |
| abstract_inverted_index.(RCL), | 33 |
| abstract_inverted_index.Within | 105 |
| abstract_inverted_index.across | 18, 128, 172 |
| abstract_inverted_index.cause, | 116 |
| abstract_inverted_index.device | 78 |
| abstract_inverted_index.groups | 90 |
| abstract_inverted_index.higher | 196 |
| abstract_inverted_index.method | 88 |
| abstract_inverted_index.source | 24 |
| abstract_inverted_index.timely | 37 |
| abstract_inverted_index.within | 102 |
| abstract_inverted_index.anomaly | 100, 161, 168, 226 |
| abstract_inverted_index.applied | 60 |
| abstract_inverted_index.cluster | 103 |
| abstract_inverted_index.complex | 5 |
| abstract_inverted_index.device, | 174 |
| abstract_inverted_index.diverse | 167 |
| abstract_inverted_index.enhance | 147 |
| abstract_inverted_index.latency | 55 |
| abstract_inverted_index.layers. | 177 |
| abstract_inverted_index.locally | 111 |
| abstract_inverted_index.minimal | 143 |
| abstract_inverted_index.network | 176 |
| abstract_inverted_index.propose | 158 |
| abstract_inverted_index.provide | 219 |
| abstract_inverted_index.results | 179 |
| abstract_inverted_index.scoring | 162 |
| abstract_inverted_index.thereby | 97 |
| abstract_inverted_index.However, | 39 |
| abstract_inverted_index.PageRank | 83 |
| abstract_inverted_index.accuracy | 149, 198 |
| abstract_inverted_index.achieves | 193 |
| abstract_inverted_index.approach | 70, 192 |
| abstract_inverted_index.cluster, | 107 |
| abstract_inverted_index.clusters | 141 |
| abstract_inverted_index.dataset, | 185 |
| abstract_inverted_index.designed | 44 |
| abstract_inverted_index.directly | 74 |
| abstract_inverted_index.enabling | 137 |
| abstract_inverted_index.executed | 110 |
| abstract_inverted_index.executes | 72 |
| abstract_inverted_index.existing | 40 |
| abstract_inverted_index.findings | 212 |
| abstract_inverted_index.identify | 113 |
| abstract_inverted_index.overhead | 58 |
| abstract_inverted_index.process, | 136 |
| abstract_inverted_index.proposed | 87, 190 |
| abstract_inverted_index.proposes | 66 |
| abstract_inverted_index.publicly | 182 |
| abstract_inverted_index.reducing | 118, 204 |
| abstract_inverted_index.solution | 224 |
| abstract_inverted_index.tailored | 164 |
| abstract_inverted_index.triggers | 169 |
| abstract_inverted_index.analysis, | 52 |
| abstract_inverted_index.anomalies | 14, 126 |
| abstract_inverted_index.available | 183 |
| abstract_inverted_index.clusters, | 96, 129 |
| abstract_inverted_index.computing | 1 |
| abstract_inverted_index.confining | 98 |
| abstract_inverted_index.dependent | 19 |
| abstract_inverted_index.diagnosis | 227 |
| abstract_inverted_index.efficient | 223 |
| abstract_inverted_index.essential | 35 |
| abstract_inverted_index.highlight | 213 |
| abstract_inverted_index.increases | 54 |
| abstract_inverted_index.introduce | 131 |
| abstract_inverted_index.mechanism | 163 |
| abstract_inverted_index.overhead. | 145 |
| abstract_inverted_index.practical | 221 |
| abstract_inverted_index.propagate | 17, 127 |
| abstract_inverted_index.services. | 20 |
| abstract_inverted_index.Evaluation | 178 |
| abstract_inverted_index.algorithm. | 85 |
| abstract_inverted_index.anomalies, | 27 |
| abstract_inverted_index.approaches | 42 |
| abstract_inverted_index.comparable | 194 |
| abstract_inverted_index.Identifying | 21 |
| abstract_inverted_index.MicroCERCL, | 186 |
| abstract_inverted_index.boundaries. | 104 |
| abstract_inverted_index.centralized | 51, 201 |
| abstract_inverted_index.counterpart | 202 |
| abstract_inverted_index.demonstrate | 187 |
| abstract_inverted_index.graph-based | 216 |
| abstract_inverted_index.lightweight | 138 |
| abstract_inverted_index.mitigation. | 38 |
| abstract_inverted_index.performance | 13 |
| abstract_inverted_index.propagation | 101 |
| abstract_inverted_index.Localization | 32 |
| abstract_inverted_index.Personalized | 82 |
| abstract_inverted_index.coordination | 139 |
| abstract_inverted_index.environments | 2, 47 |
| abstract_inverted_index.increasingly | 4 |
| abstract_inverted_index.localization | 73, 119, 151, 197, 205 |
| abstract_inverted_index.peer-to-peer | 134 |
| abstract_inverted_index.applications, | 8 |
| abstract_inverted_index.approximation | 135 |
| abstract_inverted_index.communication | 57, 144 |
| abstract_inverted_index.decentralized | 68, 191, 215 |
| abstract_inverted_index.environments, | 155 |
| abstract_inverted_index.environments. | 231 |
| abstract_inverted_index.heterogeneous | 153 |
| abstract_inverted_index.inter-cluster | 133 |
| abstract_inverted_index.microservice, | 173 |
| abstract_inverted_index.microservices | 91 |
| abstract_inverted_index.significantly | 117 |
| abstract_inverted_index.communication- | 93 |
| abstract_inverted_index.colocation-aware | 95 |
| abstract_inverted_index.microservice-based | 6 |
| abstract_inverted_index.resource-constrained | 229 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |