A Deep-learning Approach for Live Anomaly Detection of Extragalactic Transients Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3847/1538-4365/ac0893
There is a shortage of multiwavelength and spectroscopic follow-up capabilities given the number of transient and variable astrophysical events discovered through wide-field optical surveys such as the upcoming Vera C. Rubin Observatory and its associated Legacy Survey of Space and Time. From the haystack of potential science targets, astronomers must allocate scarce resources to study a selection of needles in real time. Here we present a variational recurrent autoencoder neural network to encode simulated Rubin Observatory extragalactic transient events using 1% of the PLAsTiCC data set to train the autoencoder. Our unsupervised method uniquely works with unlabeled, real-time, multivariate, and aperiodic data. We rank 1,129,184 events based on an anomaly score estimated using an isolation forest. We find that our pipeline successfully ranks rarer classes of transients as more anomalous. Using simple cuts in anomaly score and uncertainty, we identify a pure (≈95% pure) sample of rare transients (i.e., transients other than Type Ia, Type II, and Type Ibc supernovae), including superluminous and pair-instability supernovae. Finally, our algorithm is able to identify these transients as anomalous well before peak, enabling real-time follow-up studies in the era of the Rubin Observatory.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3847/1538-4365/ac0893
- https://iopscience.iop.org/article/10.3847/1538-4365/ac0893/pdf
- OA Status
- bronze
- Cited By
- 39
- References
- 90
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3137069764
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3137069764Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3847/1538-4365/ac0893Digital Object Identifier
- Title
-
A Deep-learning Approach for Live Anomaly Detection of Extragalactic TransientsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-01Full publication date if available
- Authors
-
V. Ashley Villar, Miles Cranmer, E. Berger, Gabriella Contardo, Shirley Ho, G. Hosseinzadeh, Joshua Yao-Yu LinList of authors in order
- Landing page
-
https://doi.org/10.3847/1538-4365/ac0893Publisher landing page
- PDF URL
-
https://iopscience.iop.org/article/10.3847/1538-4365/ac0893/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://iopscience.iop.org/article/10.3847/1538-4365/ac0893/pdfDirect OA link when available
- Concepts
-
Haystack, Autoencoder, Anomaly detection, Observatory, Anomaly (physics), Supernova, Computer science, Artificial neural network, Artificial intelligence, Physics, Astrophysics, Condensed matter physicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
39Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 9, 2023: 12, 2022: 7, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
90Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3137069764 |
|---|---|
| doi | https://doi.org/10.3847/1538-4365/ac0893 |
| ids.doi | https://doi.org/10.3847/1538-4365/ac0893 |
| ids.mag | 3137069764 |
| ids.openalex | https://openalex.org/W3137069764 |
| fwci | 5.52913128 |
| type | article |
| title | A Deep-learning Approach for Live Anomaly Detection of Extragalactic Transients |
| awards[0].id | https://openalex.org/G775429230 |
| awards[0].funder_id | https://openalex.org/F4320306164 |
| awards[0].display_name | |
| awards[0].funder_award_id | 718240 |
| awards[0].funder_display_name | Simons Foundation |
| biblio.issue | 2 |
| biblio.volume | 255 |
| biblio.last_page | 24 |
| biblio.first_page | 24 |
| topics[0].id | https://openalex.org/T11323 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3103 |
| topics[0].subfield.display_name | Astronomy and Astrophysics |
| topics[0].display_name | Gamma-ray bursts and supernovae |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9758999943733215 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T10818 |
| topics[2].field.id | https://openalex.org/fields/31 |
| topics[2].field.display_name | Physics and Astronomy |
| topics[2].score | 0.9387000203132629 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3106 |
| topics[2].subfield.display_name | Nuclear and High Energy Physics |
| topics[2].display_name | Astrophysics and Cosmic Phenomena |
| funders[0].id | https://openalex.org/F4320306164 |
| funders[0].ror | https://ror.org/01cmst727 |
| funders[0].display_name | Simons Foundation |
| is_xpac | False |
| apc_list.value | 4499 |
| apc_list.currency | USD |
| apc_list.value_usd | 4499 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C13424479 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8004768490791321 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5687237 |
| concepts[0].display_name | Haystack |
| concepts[1].id | https://openalex.org/C101738243 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7616353034973145 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q786435 |
| concepts[1].display_name | Autoencoder |
| concepts[2].id | https://openalex.org/C739882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6510526537895203 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[2].display_name | Anomaly detection |
| concepts[3].id | https://openalex.org/C2779919027 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6300526857376099 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q62832 |
| concepts[3].display_name | Observatory |
| concepts[4].id | https://openalex.org/C12997251 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5129699110984802 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[4].display_name | Anomaly (physics) |
| concepts[5].id | https://openalex.org/C127592171 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5009336471557617 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3937 |
| concepts[5].display_name | Supernova |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.48086267709732056 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C50644808 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4007168412208557 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[7].display_name | Artificial neural network |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3623196482658386 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.33915165066719055 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C44870925 |
| concepts[10].level | 1 |
| concepts[10].score | 0.30434587597846985 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q37547 |
| concepts[10].display_name | Astrophysics |
| concepts[11].id | https://openalex.org/C26873012 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[11].display_name | Condensed matter physics |
| keywords[0].id | https://openalex.org/keywords/haystack |
| keywords[0].score | 0.8004768490791321 |
| keywords[0].display_name | Haystack |
| keywords[1].id | https://openalex.org/keywords/autoencoder |
| keywords[1].score | 0.7616353034973145 |
| keywords[1].display_name | Autoencoder |
| keywords[2].id | https://openalex.org/keywords/anomaly-detection |
| keywords[2].score | 0.6510526537895203 |
| keywords[2].display_name | Anomaly detection |
| keywords[3].id | https://openalex.org/keywords/observatory |
| keywords[3].score | 0.6300526857376099 |
| keywords[3].display_name | Observatory |
| keywords[4].id | https://openalex.org/keywords/anomaly |
| keywords[4].score | 0.5129699110984802 |
| keywords[4].display_name | Anomaly (physics) |
| keywords[5].id | https://openalex.org/keywords/supernova |
| keywords[5].score | 0.5009336471557617 |
| keywords[5].display_name | Supernova |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.48086267709732056 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[7].score | 0.4007168412208557 |
| keywords[7].display_name | Artificial neural network |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.3623196482658386 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.33915165066719055 |
| keywords[9].display_name | Physics |
| keywords[10].id | https://openalex.org/keywords/astrophysics |
| keywords[10].score | 0.30434587597846985 |
| keywords[10].display_name | Astrophysics |
| language | en |
| locations[0].id | doi:10.3847/1538-4365/ac0893 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S183686791 |
| locations[0].source.issn | 0067-0049, 1538-4365 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0067-0049 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | The Astrophysical Journal Supplement Series |
| locations[0].source.host_organization | https://openalex.org/P4310311669 |
| locations[0].source.host_organization_name | Institute of Physics |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310311669 |
| locations[0].source.host_organization_lineage_names | Institute of Physics |
| locations[0].license | |
| locations[0].pdf_url | https://iopscience.iop.org/article/10.3847/1538-4365/ac0893/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The Astrophysical Journal Supplement Series |
| locations[0].landing_page_url | https://doi.org/10.3847/1538-4365/ac0893 |
| locations[1].id | pmh:oai:arXiv.org:2103.12102 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2103.12102 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2103.12102 |
| indexed_in | arxiv, crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5042083805 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-5814-4061 |
| authorships[0].author.display_name | V. Ashley Villar |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I78577930 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Astronomy, Columbia University, New York, NY 10027, USA |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I130769515 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I130769515 |
| authorships[0].affiliations[2].raw_affiliation_string | Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA |
| authorships[0].affiliations[3].institution_ids | https://openalex.org/I130769515 |
| authorships[0].affiliations[3].raw_affiliation_string | Institute for Computational & Data Sciences, The Pennsylvania State University, University Park, PA, USA |
| authorships[0].institutions[0].id | https://openalex.org/I78577930 |
| authorships[0].institutions[0].ror | https://ror.org/00hj8s172 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I78577930 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Columbia University |
| authorships[0].institutions[1].id | https://openalex.org/I130769515 |
| authorships[0].institutions[1].ror | https://ror.org/04p491231 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I130769515 |
| authorships[0].institutions[1].country_code | US |
| authorships[0].institutions[1].display_name | Pennsylvania State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | V. Ashley Villar |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Astronomy & Astrophysics, The Pennsylvania State University, University Park, PA 16802, USA, Department of Astronomy, Columbia University, New York, NY 10027, USA, Institute for Computational & Data Sciences, The Pennsylvania State University, University Park, PA, USA, Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA |
| authorships[1].author.id | https://openalex.org/A5078731429 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6458-3423 |
| authorships[1].author.display_name | Miles Cranmer |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20089843 |
| authorships[1].affiliations[0].raw_affiliation_string | Princeton University, Princeton, NJ 08544, USA |
| authorships[1].institutions[0].id | https://openalex.org/I20089843 |
| authorships[1].institutions[0].ror | https://ror.org/00hx57361 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20089843 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Princeton University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Miles Cranmer |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Princeton University, Princeton, NJ 08544, USA |
| authorships[2].author.id | https://openalex.org/A5062465222 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9392-9681 |
| authorships[2].author.display_name | E. Berger |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210160315 |
| authorships[2].affiliations[0].raw_affiliation_string | The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, 77 Massachusetts Avenue, Cambridge, MA 02139, USA |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210124175 |
| authorships[2].affiliations[1].raw_affiliation_string | Center for Astrophysics ∣ Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, USA |
| authorships[2].institutions[0].id | https://openalex.org/I4210124175 |
| authorships[2].institutions[0].ror | https://ror.org/03c3r2d17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I103187081, https://openalex.org/I136199984, https://openalex.org/I4210124175 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Center for Astrophysics Harvard & Smithsonian |
| authorships[2].institutions[1].id | https://openalex.org/I4210160315 |
| authorships[2].institutions[1].ror | https://ror.org/04pvzz946 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I121934306, https://openalex.org/I12912129, https://openalex.org/I136199984, https://openalex.org/I4210160315, https://openalex.org/I63966007 |
| authorships[2].institutions[1].country_code | US |
| authorships[2].institutions[1].display_name | The NSF AI Institute for Artificial Intelligence and Fundamental Interactions |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Edo Berger |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Center for Astrophysics ∣ Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, USA, The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, 77 Massachusetts Avenue, Cambridge, MA 02139, USA |
| authorships[3].author.id | https://openalex.org/A5074045439 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3011-4784 |
| authorships[3].author.display_name | Gabriella Contardo |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210153546, https://openalex.org/I4387153999 |
| authorships[3].affiliations[0].raw_affiliation_string | Flatiron Institute, New York City, NY 10010, USA |
| authorships[3].institutions[0].id | https://openalex.org/I4387153999 |
| authorships[3].institutions[0].ror | https://ror.org/00sekdz59 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210107338, https://openalex.org/I4387153999 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Flatiron Institute |
| authorships[3].institutions[1].id | https://openalex.org/I4210153546 |
| authorships[3].institutions[1].ror | https://ror.org/0508h6p74 |
| authorships[3].institutions[1].type | company |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210153546 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | Flatiron Health (United States) |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gabriella Contardo |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Flatiron Institute, New York City, NY 10010, USA |
| authorships[4].author.id | https://openalex.org/A5049051097 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1068-160X |
| authorships[4].author.display_name | Shirley Ho |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210153546, https://openalex.org/I4387153999 |
| authorships[4].affiliations[0].raw_affiliation_string | Flatiron Institute, New York City, NY 10010, USA |
| authorships[4].institutions[0].id | https://openalex.org/I4387153999 |
| authorships[4].institutions[0].ror | https://ror.org/00sekdz59 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210107338, https://openalex.org/I4387153999 |
| authorships[4].institutions[0].country_code | |
| authorships[4].institutions[0].display_name | Flatiron Institute |
| authorships[4].institutions[1].id | https://openalex.org/I4210153546 |
| authorships[4].institutions[1].ror | https://ror.org/0508h6p74 |
| authorships[4].institutions[1].type | company |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210153546 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | Flatiron Health (United States) |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shirley Ho |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Flatiron Institute, New York City, NY 10010, USA |
| authorships[5].author.id | https://openalex.org/A5041269121 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-0832-2974 |
| authorships[5].author.display_name | G. Hosseinzadeh |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210124175 |
| authorships[5].affiliations[0].raw_affiliation_string | Center for Astrophysics ∣ Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, USA |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210160315 |
| authorships[5].affiliations[1].raw_affiliation_string | The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, 77 Massachusetts Avenue, Cambridge, MA 02139, USA |
| authorships[5].institutions[0].id | https://openalex.org/I4210124175 |
| authorships[5].institutions[0].ror | https://ror.org/03c3r2d17 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I103187081, https://openalex.org/I136199984, https://openalex.org/I4210124175 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Center for Astrophysics Harvard & Smithsonian |
| authorships[5].institutions[1].id | https://openalex.org/I4210160315 |
| authorships[5].institutions[1].ror | https://ror.org/04pvzz946 |
| authorships[5].institutions[1].type | facility |
| authorships[5].institutions[1].lineage | https://openalex.org/I121934306, https://openalex.org/I12912129, https://openalex.org/I136199984, https://openalex.org/I4210160315, https://openalex.org/I63966007 |
| authorships[5].institutions[1].country_code | US |
| authorships[5].institutions[1].display_name | The NSF AI Institute for Artificial Intelligence and Fundamental Interactions |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Griffin Hosseinzadeh |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Center for Astrophysics ∣ Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, USA, The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, 77 Massachusetts Avenue, Cambridge, MA 02139, USA |
| authorships[6].author.id | https://openalex.org/A5043039867 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0680-4838 |
| authorships[6].author.display_name | Joshua Yao-Yu Lin |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I157725225 |
| authorships[6].affiliations[0].raw_affiliation_string | University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA |
| authorships[6].institutions[0].id | https://openalex.org/I157725225 |
| authorships[6].institutions[0].ror | https://ror.org/047426m28 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I157725225 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | University of Illinois Urbana-Champaign |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Joshua Yao-Yu Lin |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://iopscience.iop.org/article/10.3847/1538-4365/ac0893/pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2021-03-29T00:00:00 |
| display_name | A Deep-learning Approach for Live Anomaly Detection of Extragalactic Transients |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11323 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3103 |
| primary_topic.subfield.display_name | Astronomy and Astrophysics |
| primary_topic.display_name | Gamma-ray bursts and supernovae |
| related_works | https://openalex.org/W3186512740, https://openalex.org/W3194885736, https://openalex.org/W3046391934, https://openalex.org/W4363671829, https://openalex.org/W2806741695, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W3210364259, https://openalex.org/W4300558037 |
| cited_by_count | 39 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 9 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 12 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 7 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3847/1538-4365/ac0893 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S183686791 |
| best_oa_location.source.issn | 0067-0049, 1538-4365 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0067-0049 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | The Astrophysical Journal Supplement Series |
| best_oa_location.source.host_organization | https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_name | Institute of Physics |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310311669 |
| best_oa_location.source.host_organization_lineage_names | Institute of Physics |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://iopscience.iop.org/article/10.3847/1538-4365/ac0893/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The Astrophysical Journal Supplement Series |
| best_oa_location.landing_page_url | https://doi.org/10.3847/1538-4365/ac0893 |
| primary_location.id | doi:10.3847/1538-4365/ac0893 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S183686791 |
| primary_location.source.issn | 0067-0049, 1538-4365 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0067-0049 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | The Astrophysical Journal Supplement Series |
| primary_location.source.host_organization | https://openalex.org/P4310311669 |
| primary_location.source.host_organization_name | Institute of Physics |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310311669 |
| primary_location.source.host_organization_lineage_names | Institute of Physics |
| primary_location.license | |
| primary_location.pdf_url | https://iopscience.iop.org/article/10.3847/1538-4365/ac0893/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The Astrophysical Journal Supplement Series |
| primary_location.landing_page_url | https://doi.org/10.3847/1538-4365/ac0893 |
| publication_date | 2021-08-01 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W3044309529, https://openalex.org/W2154178173, https://openalex.org/W2127392678, https://openalex.org/W2797439311, https://openalex.org/W2905450617, https://openalex.org/W2073163146, https://openalex.org/W2959412897, https://openalex.org/W2952113268, https://openalex.org/W2015524444, https://openalex.org/W3048107446, https://openalex.org/W2279461808, https://openalex.org/W3021087295, https://openalex.org/W2732984264, https://openalex.org/W2625511618, https://openalex.org/W2544944039, https://openalex.org/W2763970807, https://openalex.org/W2345952600, https://openalex.org/W2124525630, https://openalex.org/W3035965352, https://openalex.org/W3048751874, https://openalex.org/W2011301426, https://openalex.org/W2978323293, https://openalex.org/W2159714423, https://openalex.org/W3003660131, https://openalex.org/W2766140821, https://openalex.org/W2083649335, https://openalex.org/W1994245609, https://openalex.org/W2083374520, https://openalex.org/W2922961522, https://openalex.org/W2217463804, https://openalex.org/W2127569230, https://openalex.org/W1995443851, https://openalex.org/W2020434357, https://openalex.org/W3108551359, https://openalex.org/W3109607205, https://openalex.org/W2784345691, https://openalex.org/W3149012666, https://openalex.org/W2931471748, https://openalex.org/W2622436705, https://openalex.org/W2138038169, https://openalex.org/W2906986493, https://openalex.org/W3082181328, https://openalex.org/W2947830830, https://openalex.org/W2009530585, https://openalex.org/W1567468361, https://openalex.org/W3047680949, https://openalex.org/W3007146300, https://openalex.org/W2737525525, https://openalex.org/W2945852308, https://openalex.org/W3048419233, https://openalex.org/W2889943741, https://openalex.org/W3003257820, https://openalex.org/W3128634608, https://openalex.org/W3102926994, https://openalex.org/W3104062568, https://openalex.org/W3128947838, https://openalex.org/W2563171474, https://openalex.org/W3099791440, https://openalex.org/W3109894314, https://openalex.org/W3099863841, https://openalex.org/W3100465285, https://openalex.org/W3102223310, https://openalex.org/W3101445136, https://openalex.org/W3106318684, https://openalex.org/W3101611058, https://openalex.org/W3098491344, https://openalex.org/W3157757780, https://openalex.org/W3131035714, https://openalex.org/W3100796605, https://openalex.org/W2077658674, https://openalex.org/W3103856467, https://openalex.org/W3099878876, https://openalex.org/W3103410519, https://openalex.org/W3106384162, https://openalex.org/W3103145119, https://openalex.org/W3115503526, https://openalex.org/W2910068345, https://openalex.org/W3100313043, https://openalex.org/W3117282944, https://openalex.org/W3105353888, https://openalex.org/W2950635152, https://openalex.org/W3105292270, https://openalex.org/W3103235332, https://openalex.org/W3104461589, https://openalex.org/W3104157591, https://openalex.org/W3102578139, https://openalex.org/W2892929517, https://openalex.org/W2101234009, https://openalex.org/W3105077379, https://openalex.org/W3103180515 |
| referenced_works_count | 90 |
| abstract_inverted_index.a | 3, 56, 66, 141 |
| abstract_inverted_index.1% | 81 |
| abstract_inverted_index.C. | 30 |
| abstract_inverted_index.We | 103, 117 |
| abstract_inverted_index.an | 109, 114 |
| abstract_inverted_index.as | 26, 128, 175 |
| abstract_inverted_index.in | 60, 134, 184 |
| abstract_inverted_index.is | 2, 169 |
| abstract_inverted_index.of | 5, 14, 38, 45, 58, 82, 126, 146, 187 |
| abstract_inverted_index.on | 108 |
| abstract_inverted_index.to | 54, 72, 87, 171 |
| abstract_inverted_index.we | 64, 139 |
| abstract_inverted_index.II, | 156 |
| abstract_inverted_index.Ia, | 154 |
| abstract_inverted_index.Ibc | 159 |
| abstract_inverted_index.Our | 91 |
| abstract_inverted_index.and | 7, 16, 33, 40, 100, 137, 157, 163 |
| abstract_inverted_index.era | 186 |
| abstract_inverted_index.its | 34 |
| abstract_inverted_index.our | 120, 167 |
| abstract_inverted_index.set | 86 |
| abstract_inverted_index.the | 12, 27, 43, 83, 89, 185, 188 |
| abstract_inverted_index.From | 42 |
| abstract_inverted_index.Here | 63 |
| abstract_inverted_index.Type | 153, 155, 158 |
| abstract_inverted_index.Vera | 29 |
| abstract_inverted_index.able | 170 |
| abstract_inverted_index.cuts | 133 |
| abstract_inverted_index.data | 85 |
| abstract_inverted_index.find | 118 |
| abstract_inverted_index.more | 129 |
| abstract_inverted_index.must | 50 |
| abstract_inverted_index.pure | 142 |
| abstract_inverted_index.rank | 104 |
| abstract_inverted_index.rare | 147 |
| abstract_inverted_index.real | 61 |
| abstract_inverted_index.such | 25 |
| abstract_inverted_index.than | 152 |
| abstract_inverted_index.that | 119 |
| abstract_inverted_index.well | 177 |
| abstract_inverted_index.with | 96 |
| abstract_inverted_index.Rubin | 31, 75, 189 |
| abstract_inverted_index.Space | 39 |
| abstract_inverted_index.There | 1 |
| abstract_inverted_index.Time. | 41 |
| abstract_inverted_index.Using | 131 |
| abstract_inverted_index.based | 107 |
| abstract_inverted_index.data. | 102 |
| abstract_inverted_index.given | 11 |
| abstract_inverted_index.other | 151 |
| abstract_inverted_index.peak, | 179 |
| abstract_inverted_index.pure) | 144 |
| abstract_inverted_index.ranks | 123 |
| abstract_inverted_index.rarer | 124 |
| abstract_inverted_index.score | 111, 136 |
| abstract_inverted_index.study | 55 |
| abstract_inverted_index.these | 173 |
| abstract_inverted_index.time. | 62 |
| abstract_inverted_index.train | 88 |
| abstract_inverted_index.using | 80, 113 |
| abstract_inverted_index.works | 95 |
| abstract_inverted_index.(i.e., | 149 |
| abstract_inverted_index.Legacy | 36 |
| abstract_inverted_index.Survey | 37 |
| abstract_inverted_index.before | 178 |
| abstract_inverted_index.encode | 73 |
| abstract_inverted_index.events | 19, 79, 106 |
| abstract_inverted_index.method | 93 |
| abstract_inverted_index.neural | 70 |
| abstract_inverted_index.number | 13 |
| abstract_inverted_index.sample | 145 |
| abstract_inverted_index.scarce | 52 |
| abstract_inverted_index.simple | 132 |
| abstract_inverted_index.(≈95% | 143 |
| abstract_inverted_index.anomaly | 110, 135 |
| abstract_inverted_index.classes | 125 |
| abstract_inverted_index.forest. | 116 |
| abstract_inverted_index.needles | 59 |
| abstract_inverted_index.network | 71 |
| abstract_inverted_index.optical | 23 |
| abstract_inverted_index.present | 65 |
| abstract_inverted_index.science | 47 |
| abstract_inverted_index.studies | 183 |
| abstract_inverted_index.surveys | 24 |
| abstract_inverted_index.through | 21 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 166 |
| abstract_inverted_index.PLAsTiCC | 84 |
| abstract_inverted_index.allocate | 51 |
| abstract_inverted_index.enabling | 180 |
| abstract_inverted_index.haystack | 44 |
| abstract_inverted_index.identify | 140, 172 |
| abstract_inverted_index.pipeline | 121 |
| abstract_inverted_index.shortage | 4 |
| abstract_inverted_index.targets, | 48 |
| abstract_inverted_index.uniquely | 94 |
| abstract_inverted_index.upcoming | 28 |
| abstract_inverted_index.variable | 17 |
| abstract_inverted_index.1,129,184 | 105 |
| abstract_inverted_index.algorithm | 168 |
| abstract_inverted_index.anomalous | 176 |
| abstract_inverted_index.aperiodic | 101 |
| abstract_inverted_index.estimated | 112 |
| abstract_inverted_index.follow-up | 9, 182 |
| abstract_inverted_index.including | 161 |
| abstract_inverted_index.isolation | 115 |
| abstract_inverted_index.potential | 46 |
| abstract_inverted_index.real-time | 181 |
| abstract_inverted_index.recurrent | 68 |
| abstract_inverted_index.resources | 53 |
| abstract_inverted_index.selection | 57 |
| abstract_inverted_index.simulated | 74 |
| abstract_inverted_index.transient | 15, 78 |
| abstract_inverted_index.anomalous. | 130 |
| abstract_inverted_index.associated | 35 |
| abstract_inverted_index.discovered | 20 |
| abstract_inverted_index.real-time, | 98 |
| abstract_inverted_index.transients | 127, 148, 150, 174 |
| abstract_inverted_index.unlabeled, | 97 |
| abstract_inverted_index.wide-field | 22 |
| abstract_inverted_index.Observatory | 32, 76 |
| abstract_inverted_index.astronomers | 49 |
| abstract_inverted_index.autoencoder | 69 |
| abstract_inverted_index.supernovae. | 165 |
| abstract_inverted_index.variational | 67 |
| abstract_inverted_index.Observatory. | 190 |
| abstract_inverted_index.autoencoder. | 90 |
| abstract_inverted_index.capabilities | 10 |
| abstract_inverted_index.successfully | 122 |
| abstract_inverted_index.supernovae), | 160 |
| abstract_inverted_index.uncertainty, | 138 |
| abstract_inverted_index.unsupervised | 92 |
| abstract_inverted_index.astrophysical | 18 |
| abstract_inverted_index.extragalactic | 77 |
| abstract_inverted_index.multivariate, | 99 |
| abstract_inverted_index.spectroscopic | 8 |
| abstract_inverted_index.superluminous | 162 |
| abstract_inverted_index.multiwavelength | 6 |
| abstract_inverted_index.pair-instability | 164 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.96109132 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |