A Deep Learning Approach for Ship Detection Using Satellite Imagery Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.4108/eetiot.5435
INTRODUCTION: This paper addresses ship detection in satellite imagery through a deep learning approach, vital for maritime applications. Traditional methods face challenges with large datasets, motivating the adoption of deep learning techniques. OBJECTIVES: The primary objective is to present an algorithmic methodology for U-Net model training, focusing on achieving accuracy, efficiency, and robust ship detection. Overcoming manual limitations and enhancing real-time monitoring capabilities are key objectives. METHOD: The methodology involves dataset collection from Copernicus Open Hub, employing run-length encoding for efficient preprocessing, and utilizing a U-Net model trained on Sentinel-2 images. Data manipulation includes run-length encoding, masking, and balanced dataset preprocessing. RESULT: Results demonstrate the proposed deep learning model's effectiveness in handling diverse datasets, ensuring accuracy through U-Net architecture, and addressing imbalances. The algorithmic process showcases proficiency in ship detection. CONCLUSION: In conclusion, this paper contributes a comprehensive methodology for ship detection, significantly advancing accuracy, efficiency, and robustness in maritime applications. The U-Net-based model successfully automates ship detection, promising real-time monitoring enhancements and improved maritime security.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4108/eetiot.5435
- https://publications.eai.eu/index.php/IoT/article/download/5435/3009
- OA Status
- diamond
- Cited By
- 10
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392848012
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392848012Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4108/eetiot.5435Digital Object Identifier
- Title
-
A Deep Learning Approach for Ship Detection Using Satellite ImageryWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-15Full publication date if available
- Authors
-
Alakh Niranjan, Sparsh Patial, Aditya Aryan, Akshat Mittal, Tanupriya Choudhury, Hamidreza Rabiei‐Dastjerdi, Praveen KumarList of authors in order
- Landing page
-
https://doi.org/10.4108/eetiot.5435Publisher landing page
- PDF URL
-
https://publications.eai.eu/index.php/IoT/article/download/5435/3009Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://publications.eai.eu/index.php/IoT/article/download/5435/3009Direct OA link when available
- Concepts
-
Deep learning, Satellite imagery, Satellite, Artificial intelligence, Remote sensing, Computer science, Geology, Engineering, Aerospace engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 10Per-year citation counts (last 5 years)
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392848012 |
|---|---|
| doi | https://doi.org/10.4108/eetiot.5435 |
| ids.doi | https://doi.org/10.4108/eetiot.5435 |
| ids.openalex | https://openalex.org/W4392848012 |
| fwci | 6.2277927 |
| type | article |
| title | A Deep Learning Approach for Ship Detection Using Satellite Imagery |
| biblio.issue | |
| biblio.volume | 10 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13282 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.988099992275238 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2212 |
| topics[0].subfield.display_name | Ocean Engineering |
| topics[0].display_name | Automated Road and Building Extraction |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9878000020980835 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9868999719619751 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6835915446281433 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C2778102629 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6335021257400513 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q725252 |
| concepts[1].display_name | Satellite imagery |
| concepts[2].id | https://openalex.org/C19269812 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6067788004875183 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[2].display_name | Satellite |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5474576950073242 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C62649853 |
| concepts[4].level | 1 |
| concepts[4].score | 0.500950813293457 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[4].display_name | Remote sensing |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.48011112213134766 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.36412373185157776 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C127413603 |
| concepts[7].level | 0 |
| concepts[7].score | 0.15335169434547424 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[7].display_name | Engineering |
| concepts[8].id | https://openalex.org/C146978453 |
| concepts[8].level | 1 |
| concepts[8].score | 0.08703488111495972 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[8].display_name | Aerospace engineering |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.6835915446281433 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/satellite-imagery |
| keywords[1].score | 0.6335021257400513 |
| keywords[1].display_name | Satellite imagery |
| keywords[2].id | https://openalex.org/keywords/satellite |
| keywords[2].score | 0.6067788004875183 |
| keywords[2].display_name | Satellite |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5474576950073242 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/remote-sensing |
| keywords[4].score | 0.500950813293457 |
| keywords[4].display_name | Remote sensing |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.48011112213134766 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.36412373185157776 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/engineering |
| keywords[7].score | 0.15335169434547424 |
| keywords[7].display_name | Engineering |
| keywords[8].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[8].score | 0.08703488111495972 |
| keywords[8].display_name | Aerospace engineering |
| language | en |
| locations[0].id | doi:10.4108/eetiot.5435 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210210580 |
| locations[0].source.issn | 2414-1399 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2414-1399 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | EAI Endorsed Transactions on Internet of Things |
| locations[0].source.host_organization | https://openalex.org/P4310321145 |
| locations[0].source.host_organization_name | European Alliance for Innovation |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310321145 |
| locations[0].source.host_organization_lineage_names | European Alliance for Innovation |
| locations[0].license | cc-by-nc-sa |
| locations[0].pdf_url | https://publications.eai.eu/index.php/IoT/article/download/5435/3009 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-sa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | EAI Endorsed Transactions on Internet of Things |
| locations[0].landing_page_url | https://doi.org/10.4108/eetiot.5435 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5034735470 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Alakh Niranjan |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[0].affiliations[0].raw_affiliation_string | University of Petroleum and Energy Studies |
| authorships[0].institutions[0].id | https://openalex.org/I5847235 |
| authorships[0].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Alakh Niranjan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Petroleum and Energy Studies |
| authorships[1].author.id | https://openalex.org/A5094163423 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Sparsh Patial |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[1].affiliations[0].raw_affiliation_string | University of Petroleum and Energy Studies |
| authorships[1].institutions[0].id | https://openalex.org/I5847235 |
| authorships[1].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sparsh Patial |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Petroleum and Energy Studies |
| authorships[2].author.id | https://openalex.org/A5114136393 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Aditya Aryan |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[2].affiliations[0].raw_affiliation_string | University of Petroleum and Energy Studies |
| authorships[2].institutions[0].id | https://openalex.org/I5847235 |
| authorships[2].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Aditya Aryan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Petroleum and Energy Studies |
| authorships[3].author.id | https://openalex.org/A5101400426 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0795-9954 |
| authorships[3].author.display_name | Akshat Mittal |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I5847235 |
| authorships[3].affiliations[0].raw_affiliation_string | University of Petroleum and Energy Studies |
| authorships[3].institutions[0].id | https://openalex.org/I5847235 |
| authorships[3].institutions[0].ror | https://ror.org/04q2jes40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I5847235 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | University of Petroleum and Energy Studies |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Akshat Mittal |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Petroleum and Energy Studies |
| authorships[4].author.id | https://openalex.org/A5021051196 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9826-2759 |
| authorships[4].author.display_name | Tanupriya Choudhury |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I60054993 |
| authorships[4].affiliations[0].raw_affiliation_string | Graphic Era University |
| authorships[4].institutions[0].id | https://openalex.org/I60054993 |
| authorships[4].institutions[0].ror | https://ror.org/03wqgqd89 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I60054993 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Graphic Era University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Tanupriya Choudhury |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Graphic Era University |
| authorships[5].author.id | https://openalex.org/A5018829327 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2576-793X |
| authorships[5].author.display_name | Hamidreza Rabiei‐Dastjerdi |
| authorships[5].countries | IE |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I100930933 |
| authorships[5].affiliations[0].raw_affiliation_string | University College Dublin |
| authorships[5].institutions[0].id | https://openalex.org/I100930933 |
| authorships[5].institutions[0].ror | https://ror.org/05m7pjf47 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I100930933 |
| authorships[5].institutions[0].country_code | IE |
| authorships[5].institutions[0].display_name | University College Dublin |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Hamidreza Rabiei-Dastjerdi |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | University College Dublin |
| authorships[6].author.id | https://openalex.org/A5100681067 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-9606-8960 |
| authorships[6].author.display_name | Praveen Kumar |
| authorships[6].countries | KZ |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210141757 |
| authorships[6].affiliations[0].raw_affiliation_string | Astana IT University |
| authorships[6].institutions[0].id | https://openalex.org/I4210141757 |
| authorships[6].institutions[0].ror | https://ror.org/038mavt60 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210141757 |
| authorships[6].institutions[0].country_code | KZ |
| authorships[6].institutions[0].display_name | Astana Medical University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Praveen Kumar |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Astana IT University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://publications.eai.eu/index.php/IoT/article/download/5435/3009 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Deep Learning Approach for Ship Detection Using Satellite Imagery |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13282 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.988099992275238 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2212 |
| primary_topic.subfield.display_name | Ocean Engineering |
| primary_topic.display_name | Automated Road and Building Extraction |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4321369474, https://openalex.org/W2013329914, https://openalex.org/W4360585206, https://openalex.org/W2392383081, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 10 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4108/eetiot.5435 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210210580 |
| best_oa_location.source.issn | 2414-1399 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2414-1399 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | EAI Endorsed Transactions on Internet of Things |
| best_oa_location.source.host_organization | https://openalex.org/P4310321145 |
| best_oa_location.source.host_organization_name | European Alliance for Innovation |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310321145 |
| best_oa_location.source.host_organization_lineage_names | European Alliance for Innovation |
| best_oa_location.license | cc-by-nc-sa |
| best_oa_location.pdf_url | https://publications.eai.eu/index.php/IoT/article/download/5435/3009 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | EAI Endorsed Transactions on Internet of Things |
| best_oa_location.landing_page_url | https://doi.org/10.4108/eetiot.5435 |
| primary_location.id | doi:10.4108/eetiot.5435 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210210580 |
| primary_location.source.issn | 2414-1399 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2414-1399 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | EAI Endorsed Transactions on Internet of Things |
| primary_location.source.host_organization | https://openalex.org/P4310321145 |
| primary_location.source.host_organization_name | European Alliance for Innovation |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310321145 |
| primary_location.source.host_organization_lineage_names | European Alliance for Innovation |
| primary_location.license | cc-by-nc-sa |
| primary_location.pdf_url | https://publications.eai.eu/index.php/IoT/article/download/5435/3009 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-sa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | EAI Endorsed Transactions on Internet of Things |
| primary_location.landing_page_url | https://doi.org/10.4108/eetiot.5435 |
| publication_date | 2024-03-15 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2031294548, https://openalex.org/W2545590179, https://openalex.org/W2127172377, https://openalex.org/W2547373719, https://openalex.org/W2328148566, https://openalex.org/W2900884935, https://openalex.org/W2894994225, https://openalex.org/W2896633068, https://openalex.org/W2772666665, https://openalex.org/W2960301618, https://openalex.org/W2984762222, https://openalex.org/W3015423790, https://openalex.org/W3130813744, https://openalex.org/W3035980407, https://openalex.org/W3211213470, https://openalex.org/W3155959105 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 10, 84, 136 |
| abstract_inverted_index.In | 131 |
| abstract_inverted_index.an | 39 |
| abstract_inverted_index.in | 6, 110, 127, 148 |
| abstract_inverted_index.is | 36 |
| abstract_inverted_index.of | 28 |
| abstract_inverted_index.on | 47, 88 |
| abstract_inverted_index.to | 37 |
| abstract_inverted_index.The | 33, 67, 122, 151 |
| abstract_inverted_index.and | 51, 58, 82, 97, 119, 146, 162 |
| abstract_inverted_index.are | 63 |
| abstract_inverted_index.for | 15, 42, 79, 139 |
| abstract_inverted_index.key | 64 |
| abstract_inverted_index.the | 26, 104 |
| abstract_inverted_index.Data | 91 |
| abstract_inverted_index.Hub, | 75 |
| abstract_inverted_index.Open | 74 |
| abstract_inverted_index.This | 1 |
| abstract_inverted_index.deep | 11, 29, 106 |
| abstract_inverted_index.face | 20 |
| abstract_inverted_index.from | 72 |
| abstract_inverted_index.ship | 4, 53, 128, 140, 156 |
| abstract_inverted_index.this | 133 |
| abstract_inverted_index.with | 22 |
| abstract_inverted_index.U-Net | 43, 85, 117 |
| abstract_inverted_index.large | 23 |
| abstract_inverted_index.model | 44, 86, 153 |
| abstract_inverted_index.paper | 2, 134 |
| abstract_inverted_index.vital | 14 |
| abstract_inverted_index.manual | 56 |
| abstract_inverted_index.robust | 52 |
| abstract_inverted_index.METHOD: | 66 |
| abstract_inverted_index.RESULT: | 101 |
| abstract_inverted_index.Results | 102 |
| abstract_inverted_index.dataset | 70, 99 |
| abstract_inverted_index.diverse | 112 |
| abstract_inverted_index.imagery | 8 |
| abstract_inverted_index.images. | 90 |
| abstract_inverted_index.methods | 19 |
| abstract_inverted_index.model's | 108 |
| abstract_inverted_index.present | 38 |
| abstract_inverted_index.primary | 34 |
| abstract_inverted_index.process | 124 |
| abstract_inverted_index.through | 9, 116 |
| abstract_inverted_index.trained | 87 |
| abstract_inverted_index.accuracy | 115 |
| abstract_inverted_index.adoption | 27 |
| abstract_inverted_index.balanced | 98 |
| abstract_inverted_index.encoding | 78 |
| abstract_inverted_index.ensuring | 114 |
| abstract_inverted_index.focusing | 46 |
| abstract_inverted_index.handling | 111 |
| abstract_inverted_index.improved | 163 |
| abstract_inverted_index.includes | 93 |
| abstract_inverted_index.involves | 69 |
| abstract_inverted_index.learning | 12, 30, 107 |
| abstract_inverted_index.maritime | 16, 149, 164 |
| abstract_inverted_index.masking, | 96 |
| abstract_inverted_index.proposed | 105 |
| abstract_inverted_index.accuracy, | 49, 144 |
| abstract_inverted_index.achieving | 48 |
| abstract_inverted_index.addresses | 3 |
| abstract_inverted_index.advancing | 143 |
| abstract_inverted_index.approach, | 13 |
| abstract_inverted_index.automates | 155 |
| abstract_inverted_index.datasets, | 24, 113 |
| abstract_inverted_index.detection | 5 |
| abstract_inverted_index.efficient | 80 |
| abstract_inverted_index.employing | 76 |
| abstract_inverted_index.encoding, | 95 |
| abstract_inverted_index.enhancing | 59 |
| abstract_inverted_index.objective | 35 |
| abstract_inverted_index.promising | 158 |
| abstract_inverted_index.real-time | 60, 159 |
| abstract_inverted_index.satellite | 7 |
| abstract_inverted_index.security. | 165 |
| abstract_inverted_index.showcases | 125 |
| abstract_inverted_index.training, | 45 |
| abstract_inverted_index.utilizing | 83 |
| abstract_inverted_index.Copernicus | 73 |
| abstract_inverted_index.Overcoming | 55 |
| abstract_inverted_index.Sentinel-2 | 89 |
| abstract_inverted_index.addressing | 120 |
| abstract_inverted_index.challenges | 21 |
| abstract_inverted_index.collection | 71 |
| abstract_inverted_index.detection, | 141, 157 |
| abstract_inverted_index.detection. | 54, 129 |
| abstract_inverted_index.monitoring | 61, 160 |
| abstract_inverted_index.motivating | 25 |
| abstract_inverted_index.robustness | 147 |
| abstract_inverted_index.run-length | 77, 94 |
| abstract_inverted_index.CONCLUSION: | 130 |
| abstract_inverted_index.OBJECTIVES: | 32 |
| abstract_inverted_index.Traditional | 18 |
| abstract_inverted_index.U-Net-based | 152 |
| abstract_inverted_index.algorithmic | 40, 123 |
| abstract_inverted_index.conclusion, | 132 |
| abstract_inverted_index.contributes | 135 |
| abstract_inverted_index.demonstrate | 103 |
| abstract_inverted_index.efficiency, | 50, 145 |
| abstract_inverted_index.imbalances. | 121 |
| abstract_inverted_index.limitations | 57 |
| abstract_inverted_index.methodology | 41, 68, 138 |
| abstract_inverted_index.objectives. | 65 |
| abstract_inverted_index.proficiency | 126 |
| abstract_inverted_index.techniques. | 31 |
| abstract_inverted_index.capabilities | 62 |
| abstract_inverted_index.enhancements | 161 |
| abstract_inverted_index.manipulation | 92 |
| abstract_inverted_index.successfully | 154 |
| abstract_inverted_index.INTRODUCTION: | 0 |
| abstract_inverted_index.applications. | 17, 150 |
| abstract_inverted_index.architecture, | 118 |
| abstract_inverted_index.comprehensive | 137 |
| abstract_inverted_index.effectiveness | 109 |
| abstract_inverted_index.significantly | 142 |
| abstract_inverted_index.preprocessing, | 81 |
| abstract_inverted_index.preprocessing. | 100 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.94430223 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |