A Deep Learning-Based Algorithm for Identifying Precipitation Clouds Using Fengyun-4A Satellite Observation Data Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3390/s23156832
Rapid and accurate identification of precipitation clouds from satellite observations is essential for the research of quantitative precipitation estimation and precipitation nowcasting. In this study, we proposed a novel Convolutional Neural Network (CNN)-based algorithm for precipitation cloud identification (PCINet) in the daytime, nighttime, and nychthemeron. High spatiotemporal and multi-spectral information from the Fengyun-4A (FY-4A) satellite is utilized as the inputs, and a multi-scale structure and skip connection constraint strategy are presented in the framework of the algorithm to improve the precipitation cloud identification. Moreover, the effectiveness of visible/near-infrared spectral information in improving daytime precipitation cloud identification is explored. To evaluate this algorithm, we compare it with five other deep learning models used for image segmentation and perform qualitative and quantitative analyses of long-time series using data from 2021. In addition, two heavy precipitation events are selected to analyze the spatial distribution of precipitation cloud identification. Statistics and visualization of the experiment results show that the proposed model outperforms the baseline models in this task, and adding visible/near-infrared spectral information in the daytime can effectively improve model performance. More importantly, the proposed model can provide accurate and near-real-time results, which has important application in observing precipitation clouds.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s23156832
- https://www.mdpi.com/1424-8220/23/15/6832/pdf?version=1690863909
- OA Status
- gold
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385461486
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385461486Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s23156832Digital Object Identifier
- Title
-
A Deep Learning-Based Algorithm for Identifying Precipitation Clouds Using Fengyun-4A Satellite Observation DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-31Full publication date if available
- Authors
-
Guangyi Ma, Jie Huang, Yonghong Zhang, Linglong Zhu, Kenny Thiam Choy Lim Kam Sian, Yixin Feng, Tianming YuList of authors in order
- Landing page
-
https://doi.org/10.3390/s23156832Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/23/15/6832/pdf?version=1690863909Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/23/15/6832/pdf?version=1690863909Direct OA link when available
- Concepts
-
Nowcasting, Computer science, Remote sensing, Satellite, Algorithm, Cloud computing, Precipitation, Convolutional neural network, Segmentation, Geostationary orbit, Identification (biology), Artificial intelligence, Environmental science, Meteorology, Operating system, Physics, Biology, Aerospace engineering, Geology, Engineering, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385461486 |
|---|---|
| doi | https://doi.org/10.3390/s23156832 |
| ids.doi | https://doi.org/10.3390/s23156832 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/37571615 |
| ids.openalex | https://openalex.org/W4385461486 |
| fwci | 0.0 |
| type | article |
| title | A Deep Learning-Based Algorithm for Identifying Precipitation Clouds Using Fengyun-4A Satellite Observation Data |
| awards[0].id | https://openalex.org/G3256866207 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2021YFE0116900 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G5412665680 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 42175157 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 15 |
| biblio.volume | 23 |
| biblio.last_page | 6832 |
| biblio.first_page | 6832 |
| topics[0].id | https://openalex.org/T11234 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Precipitation Measurement and Analysis |
| topics[1].id | https://openalex.org/T10930 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9976999759674072 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Flood Risk Assessment and Management |
| topics[2].id | https://openalex.org/T10466 |
| topics[2].field.id | https://openalex.org/fields/19 |
| topics[2].field.display_name | Earth and Planetary Sciences |
| topics[2].score | 0.9955000281333923 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1902 |
| topics[2].subfield.display_name | Atmospheric Science |
| topics[2].display_name | Meteorological Phenomena and Simulations |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C2781013037 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6738308668136597 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1433331 |
| concepts[0].display_name | Nowcasting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6480520963668823 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C62649853 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5799464583396912 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[2].display_name | Remote sensing |
| concepts[3].id | https://openalex.org/C19269812 |
| concepts[3].level | 2 |
| concepts[3].score | 0.578557014465332 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q26540 |
| concepts[3].display_name | Satellite |
| concepts[4].id | https://openalex.org/C11413529 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5648260116577148 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[4].display_name | Algorithm |
| concepts[5].id | https://openalex.org/C79974875 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5555564761161804 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[5].display_name | Cloud computing |
| concepts[6].id | https://openalex.org/C107054158 |
| concepts[6].level | 2 |
| concepts[6].score | 0.553377091884613 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q25257 |
| concepts[6].display_name | Precipitation |
| concepts[7].id | https://openalex.org/C81363708 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5495237708091736 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[7].display_name | Convolutional neural network |
| concepts[8].id | https://openalex.org/C89600930 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4851725697517395 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[8].display_name | Segmentation |
| concepts[9].id | https://openalex.org/C16405173 |
| concepts[9].level | 3 |
| concepts[9].score | 0.46495306491851807 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192316 |
| concepts[9].display_name | Geostationary orbit |
| concepts[10].id | https://openalex.org/C116834253 |
| concepts[10].level | 2 |
| concepts[10].score | 0.42974695563316345 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[10].display_name | Identification (biology) |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3430081009864807 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C39432304 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3352097272872925 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[12].display_name | Environmental science |
| concepts[13].id | https://openalex.org/C153294291 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3282700777053833 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[13].display_name | Meteorology |
| concepts[14].id | https://openalex.org/C111919701 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[14].display_name | Operating system |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| concepts[17].id | https://openalex.org/C146978453 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[17].display_name | Aerospace engineering |
| concepts[18].id | https://openalex.org/C127313418 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[18].display_name | Geology |
| concepts[19].id | https://openalex.org/C127413603 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[19].display_name | Engineering |
| concepts[20].id | https://openalex.org/C59822182 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[20].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/nowcasting |
| keywords[0].score | 0.6738308668136597 |
| keywords[0].display_name | Nowcasting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6480520963668823 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/remote-sensing |
| keywords[2].score | 0.5799464583396912 |
| keywords[2].display_name | Remote sensing |
| keywords[3].id | https://openalex.org/keywords/satellite |
| keywords[3].score | 0.578557014465332 |
| keywords[3].display_name | Satellite |
| keywords[4].id | https://openalex.org/keywords/algorithm |
| keywords[4].score | 0.5648260116577148 |
| keywords[4].display_name | Algorithm |
| keywords[5].id | https://openalex.org/keywords/cloud-computing |
| keywords[5].score | 0.5555564761161804 |
| keywords[5].display_name | Cloud computing |
| keywords[6].id | https://openalex.org/keywords/precipitation |
| keywords[6].score | 0.553377091884613 |
| keywords[6].display_name | Precipitation |
| keywords[7].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[7].score | 0.5495237708091736 |
| keywords[7].display_name | Convolutional neural network |
| keywords[8].id | https://openalex.org/keywords/segmentation |
| keywords[8].score | 0.4851725697517395 |
| keywords[8].display_name | Segmentation |
| keywords[9].id | https://openalex.org/keywords/geostationary-orbit |
| keywords[9].score | 0.46495306491851807 |
| keywords[9].display_name | Geostationary orbit |
| keywords[10].id | https://openalex.org/keywords/identification |
| keywords[10].score | 0.42974695563316345 |
| keywords[10].display_name | Identification (biology) |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.3430081009864807 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/environmental-science |
| keywords[12].score | 0.3352097272872925 |
| keywords[12].display_name | Environmental science |
| keywords[13].id | https://openalex.org/keywords/meteorology |
| keywords[13].score | 0.3282700777053833 |
| keywords[13].display_name | Meteorology |
| language | en |
| locations[0].id | doi:10.3390/s23156832 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/23/15/6832/pdf?version=1690863909 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s23156832 |
| locations[1].id | pmid:37571615 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/37571615 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10422346 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10422346/pdf/sensors-23-06832.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10422346 |
| locations[3].id | pmh:oai:doaj.org/article:7f17c4a9b9574c3cbaa1d15b9d23da32 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 23, Iss 15, p 6832 (2023) |
| locations[3].landing_page_url | https://doaj.org/article/7f17c4a9b9574c3cbaa1d15b9d23da32 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/23/15/6832/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors; Volume 23; Issue 15; Pages: 6832 |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/s23156832 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5076808723 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1042-319X |
| authorships[0].author.display_name | Guangyi Ma |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[0].institutions[0].id | https://openalex.org/I200845125 |
| authorships[0].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guangyi Ma |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[1].author.id | https://openalex.org/A5001513473 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2583-7857 |
| authorships[1].author.display_name | Jie Huang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[1].institutions[0].id | https://openalex.org/I200845125 |
| authorships[1].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Huang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[2].author.id | https://openalex.org/A5077369098 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3011-3113 |
| authorships[2].author.display_name | Yonghong Zhang |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[2].institutions[0].id | https://openalex.org/I200845125 |
| authorships[2].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yonghong Zhang |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China |
| authorships[3].author.id | https://openalex.org/A5077905824 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8863-9911 |
| authorships[3].author.display_name | Linglong Zhu |
| authorships[3].affiliations[0].raw_affiliation_string | School of Internet of Things Engineering, Wuxi University, Wuxi 214105, China |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Linglong Zhu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Internet of Things Engineering, Wuxi University, Wuxi 214105, China |
| authorships[4].author.id | https://openalex.org/A5059323330 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-8328-8745 |
| authorships[4].author.display_name | Kenny Thiam Choy Lim Kam Sian |
| authorships[4].affiliations[0].raw_affiliation_string | School of Atmospheric Science and Remote Sensing, Wuxi University, Wuxi 214105, China |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kenny Thiam Choy Lim Kam Sian |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Atmospheric Science and Remote Sensing, Wuxi University, Wuxi 214105, China |
| authorships[5].author.id | https://openalex.org/A5108280729 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yixin Feng |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210152545 |
| authorships[5].affiliations[0].raw_affiliation_string | Anhui Meteorological Information Center, Hefei 230031, China |
| authorships[5].institutions[0].id | https://openalex.org/I4210152545 |
| authorships[5].institutions[0].ror | https://ror.org/04zrrk968 |
| authorships[5].institutions[0].type | government |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210152545 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Anhui Provincial Meteorological Bureau |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yixin Feng |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Anhui Meteorological Information Center, Hefei 230031, China |
| authorships[6].author.id | https://openalex.org/A5100570160 |
| authorships[6].author.orcid | https://orcid.org/0009-0005-1897-633X |
| authorships[6].author.display_name | Tianming Yu |
| authorships[6].affiliations[0].raw_affiliation_string | Tiantai Meteorological Bureau, Taizhou 317200, China |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Tianming Yu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Tiantai Meteorological Bureau, Taizhou 317200, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/23/15/6832/pdf?version=1690863909 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Deep Learning-Based Algorithm for Identifying Precipitation Clouds Using Fengyun-4A Satellite Observation Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11234 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Precipitation Measurement and Analysis |
| related_works | https://openalex.org/W2098567841, https://openalex.org/W3124209601, https://openalex.org/W2238969010, https://openalex.org/W2189249776, https://openalex.org/W2945625440, https://openalex.org/W1526105959, https://openalex.org/W3193710367, https://openalex.org/W3122492506, https://openalex.org/W4388046081, https://openalex.org/W2966824284 |
| cited_by_count | 0 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s23156832 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/23/15/6832/pdf?version=1690863909 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s23156832 |
| primary_location.id | doi:10.3390/s23156832 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/23/15/6832/pdf?version=1690863909 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s23156832 |
| publication_date | 2023-07-31 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1990736903, https://openalex.org/W1959945168, https://openalex.org/W2082027031, https://openalex.org/W2139347645, https://openalex.org/W2790394457, https://openalex.org/W3096052669, https://openalex.org/W3001346916, https://openalex.org/W3044918711, https://openalex.org/W2988908323, https://openalex.org/W2158830316, https://openalex.org/W2080441940, https://openalex.org/W1982745943, https://openalex.org/W2027831657, https://openalex.org/W2013689051, https://openalex.org/W2002869399, https://openalex.org/W1965295327, https://openalex.org/W2061473964, https://openalex.org/W6726377065, https://openalex.org/W2172553355, https://openalex.org/W2158528733, https://openalex.org/W2139617495, https://openalex.org/W2174121510, https://openalex.org/W2027468916, https://openalex.org/W1979945830, https://openalex.org/W2018796175, https://openalex.org/W2374023530, https://openalex.org/W2946782748, https://openalex.org/W2060786871, https://openalex.org/W2892593980, https://openalex.org/W2055308682, https://openalex.org/W6853507263, https://openalex.org/W2963374186, https://openalex.org/W2977666392, https://openalex.org/W3023506241, https://openalex.org/W2919115771, https://openalex.org/W3088215683, https://openalex.org/W3170277727, https://openalex.org/W4283168768, https://openalex.org/W3171688233, https://openalex.org/W2767834217, https://openalex.org/W3130983263, https://openalex.org/W2560023338, https://openalex.org/W2068375500, https://openalex.org/W1903029394, https://openalex.org/W2964309882, https://openalex.org/W2963881378, https://openalex.org/W2784731895, https://openalex.org/W4383118049, https://openalex.org/W2520352643 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 27, 61 |
| abstract_inverted_index.In | 22, 128 |
| abstract_inverted_index.To | 98 |
| abstract_inverted_index.as | 57 |
| abstract_inverted_index.in | 39, 71, 90, 161, 169, 192 |
| abstract_inverted_index.is | 10, 55, 96 |
| abstract_inverted_index.it | 104 |
| abstract_inverted_index.of | 4, 15, 74, 86, 121, 141, 148 |
| abstract_inverted_index.to | 77, 136 |
| abstract_inverted_index.we | 25, 102 |
| abstract_inverted_index.and | 1, 19, 43, 47, 60, 64, 115, 118, 146, 164, 185 |
| abstract_inverted_index.are | 69, 134 |
| abstract_inverted_index.can | 172, 182 |
| abstract_inverted_index.for | 12, 34, 112 |
| abstract_inverted_index.has | 189 |
| abstract_inverted_index.the | 13, 40, 51, 58, 72, 75, 79, 84, 138, 149, 154, 158, 170, 179 |
| abstract_inverted_index.two | 130 |
| abstract_inverted_index.High | 45 |
| abstract_inverted_index.More | 177 |
| abstract_inverted_index.data | 125 |
| abstract_inverted_index.deep | 108 |
| abstract_inverted_index.five | 106 |
| abstract_inverted_index.from | 7, 50, 126 |
| abstract_inverted_index.show | 152 |
| abstract_inverted_index.skip | 65 |
| abstract_inverted_index.that | 153 |
| abstract_inverted_index.this | 23, 100, 162 |
| abstract_inverted_index.used | 111 |
| abstract_inverted_index.with | 105 |
| abstract_inverted_index.2021. | 127 |
| abstract_inverted_index.Rapid | 0 |
| abstract_inverted_index.cloud | 36, 81, 94, 143 |
| abstract_inverted_index.heavy | 131 |
| abstract_inverted_index.image | 113 |
| abstract_inverted_index.model | 156, 175, 181 |
| abstract_inverted_index.novel | 28 |
| abstract_inverted_index.other | 107 |
| abstract_inverted_index.task, | 163 |
| abstract_inverted_index.using | 124 |
| abstract_inverted_index.which | 188 |
| abstract_inverted_index.Neural | 30 |
| abstract_inverted_index.adding | 165 |
| abstract_inverted_index.clouds | 6 |
| abstract_inverted_index.events | 133 |
| abstract_inverted_index.models | 110, 160 |
| abstract_inverted_index.series | 123 |
| abstract_inverted_index.study, | 24 |
| abstract_inverted_index.(FY-4A) | 53 |
| abstract_inverted_index.Network | 31 |
| abstract_inverted_index.analyze | 137 |
| abstract_inverted_index.clouds. | 195 |
| abstract_inverted_index.compare | 103 |
| abstract_inverted_index.daytime | 92, 171 |
| abstract_inverted_index.improve | 78, 174 |
| abstract_inverted_index.inputs, | 59 |
| abstract_inverted_index.perform | 116 |
| abstract_inverted_index.provide | 183 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.spatial | 139 |
| abstract_inverted_index.(PCINet) | 38 |
| abstract_inverted_index.accurate | 2, 184 |
| abstract_inverted_index.analyses | 120 |
| abstract_inverted_index.baseline | 159 |
| abstract_inverted_index.daytime, | 41 |
| abstract_inverted_index.evaluate | 99 |
| abstract_inverted_index.learning | 109 |
| abstract_inverted_index.proposed | 26, 155, 180 |
| abstract_inverted_index.research | 14 |
| abstract_inverted_index.results, | 187 |
| abstract_inverted_index.selected | 135 |
| abstract_inverted_index.spectral | 88, 167 |
| abstract_inverted_index.strategy | 68 |
| abstract_inverted_index.utilized | 56 |
| abstract_inverted_index.Moreover, | 83 |
| abstract_inverted_index.addition, | 129 |
| abstract_inverted_index.algorithm | 33, 76 |
| abstract_inverted_index.essential | 11 |
| abstract_inverted_index.explored. | 97 |
| abstract_inverted_index.framework | 73 |
| abstract_inverted_index.important | 190 |
| abstract_inverted_index.improving | 91 |
| abstract_inverted_index.long-time | 122 |
| abstract_inverted_index.observing | 193 |
| abstract_inverted_index.presented | 70 |
| abstract_inverted_index.satellite | 8, 54 |
| abstract_inverted_index.structure | 63 |
| abstract_inverted_index.Fengyun-4A | 52 |
| abstract_inverted_index.Statistics | 145 |
| abstract_inverted_index.algorithm, | 101 |
| abstract_inverted_index.connection | 66 |
| abstract_inverted_index.constraint | 67 |
| abstract_inverted_index.estimation | 18 |
| abstract_inverted_index.experiment | 150 |
| abstract_inverted_index.nighttime, | 42 |
| abstract_inverted_index.(CNN)-based | 32 |
| abstract_inverted_index.application | 191 |
| abstract_inverted_index.effectively | 173 |
| abstract_inverted_index.information | 49, 89, 168 |
| abstract_inverted_index.multi-scale | 62 |
| abstract_inverted_index.nowcasting. | 21 |
| abstract_inverted_index.outperforms | 157 |
| abstract_inverted_index.qualitative | 117 |
| abstract_inverted_index.distribution | 140 |
| abstract_inverted_index.importantly, | 178 |
| abstract_inverted_index.observations | 9 |
| abstract_inverted_index.performance. | 176 |
| abstract_inverted_index.quantitative | 16, 119 |
| abstract_inverted_index.segmentation | 114 |
| abstract_inverted_index.Convolutional | 29 |
| abstract_inverted_index.effectiveness | 85 |
| abstract_inverted_index.nychthemeron. | 44 |
| abstract_inverted_index.precipitation | 5, 17, 20, 35, 80, 93, 132, 142, 194 |
| abstract_inverted_index.visualization | 147 |
| abstract_inverted_index.identification | 3, 37, 95 |
| abstract_inverted_index.multi-spectral | 48 |
| abstract_inverted_index.near-real-time | 186 |
| abstract_inverted_index.spatiotemporal | 46 |
| abstract_inverted_index.identification. | 82, 144 |
| abstract_inverted_index.visible/near-infrared | 87, 166 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5077369098 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I200845125 |
| citation_normalized_percentile.value | 0.14802572 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |