A deep learning-based approach to automated rib fracture detection and CWIS classification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1007/s11548-025-03390-5
Purpose Trauma-induced rib fractures are a common injury. The number and characteristics of these fractures influence whether a patient is treated nonoperatively or surgically. Rib fractures are typically diagnosed using CT scans, yet 19.2–26.8% of fractures are still missed during assessment. Another challenge in managing rib fractures is the interobserver variability in their classification. Purpose of this study was to develop and assess an automated method that detects rib fractures in CT scans, and classifies them according to the Chest Wall Injury Society (CWIS) classification. Methods 198 CT scans were collected, of which 170 were used for training and internal validation, and 28 for external validation. Fractures and their classifications were manually annotated in each of the scans. A detection and classification network was trained for each of the three components of the CWIS classifications. In addition, a rib number labeling network was trained for obtaining the rib number of a fracture. Experiments were performed to assess the method performance. Results On the internal test set, the method achieved a detection sensitivity of 80%, at a precision of 87%, and an F1-score of 83%, with a mean number of FPPS (false positives per scan) of 1.11. Classification sensitivity varied, with the lowest being 25% for complex fractures and the highest being 97% for posterior fractures. The correct rib number was assigned to 94% of the detected fractures. The custom-trained nnU-Net correctly labeled 95.5% of all ribs and 98.4% of fractured ribs in 30 patients. The detection and classification performance on the external validation dataset was slightly better, with a fracture detection sensitivity of 84%, precision of 85%, F1-score of 84%, FPPS of 0.96 and 95% of the fractures were assigned the correct rib number. Conclusion The method developed is able to accurately detect and classify rib fractures in CT scans, there is room for improvement in the (rare and) underrepresented classes in the training set.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s11548-025-03390-5
- https://link.springer.com/content/pdf/10.1007/s11548-025-03390-5.pdf
- OA Status
- hybrid
- References
- 23
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410445179
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410445179Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s11548-025-03390-5Digital Object Identifier
- Title
-
A deep learning-based approach to automated rib fracture detection and CWIS classificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-16Full publication date if available
- Authors
-
Victoria Marting, Noor Borren, Max R Van Diepen, Esther M.M. Van Lieshout, Mathieu M. E. Wijffels, Theo van WalsumList of authors in order
- Landing page
-
https://doi.org/10.1007/s11548-025-03390-5Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s11548-025-03390-5.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s11548-025-03390-5.pdfDirect OA link when available
- Concepts
-
Rib cage, False positive paradox, Medicine, Radiology, Fracture (geology), Artificial intelligence, Nuclear medicine, Computer science, Geology, Anatomy, Geotechnical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
23Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410445179 |
|---|---|
| doi | https://doi.org/10.1007/s11548-025-03390-5 |
| ids.doi | https://doi.org/10.1007/s11548-025-03390-5 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40377883 |
| ids.openalex | https://openalex.org/W4410445179 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000000981 |
| mesh[1].descriptor_ui | D012253 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | diagnostic imaging |
| mesh[1].descriptor_name | Rib Fractures |
| mesh[2].qualifier_ui | Q000145 |
| mesh[2].descriptor_ui | D012253 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | classification |
| mesh[2].descriptor_name | Rib Fractures |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000077321 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Deep Learning |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D014057 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Tomography, X-Ray Computed |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008297 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Male |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012680 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Sensitivity and Specificity |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D011857 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | Q000293 |
| mesh[9].descriptor_ui | D035441 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | injuries |
| mesh[9].descriptor_name | Thoracic Wall |
| mesh[10].qualifier_ui | Q000000981 |
| mesh[10].descriptor_ui | D035441 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | diagnostic imaging |
| mesh[10].descriptor_name | Thoracic Wall |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D008875 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Middle Aged |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000000981 |
| mesh[13].descriptor_ui | D012253 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | diagnostic imaging |
| mesh[13].descriptor_name | Rib Fractures |
| mesh[14].qualifier_ui | Q000145 |
| mesh[14].descriptor_ui | D012253 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | classification |
| mesh[14].descriptor_name | Rib Fractures |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000077321 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Deep Learning |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D014057 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Tomography, X-Ray Computed |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008297 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Male |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D012680 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Sensitivity and Specificity |
| mesh[19].qualifier_ui | Q000379 |
| mesh[19].descriptor_ui | D011857 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | methods |
| mesh[19].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D005260 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Female |
| mesh[21].qualifier_ui | Q000293 |
| mesh[21].descriptor_ui | D035441 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | injuries |
| mesh[21].descriptor_name | Thoracic Wall |
| mesh[22].qualifier_ui | Q000000981 |
| mesh[22].descriptor_ui | D035441 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | diagnostic imaging |
| mesh[22].descriptor_name | Thoracic Wall |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D008875 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Middle Aged |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D006801 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Humans |
| mesh[25].qualifier_ui | Q000000981 |
| mesh[25].descriptor_ui | D012253 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | diagnostic imaging |
| mesh[25].descriptor_name | Rib Fractures |
| mesh[26].qualifier_ui | Q000145 |
| mesh[26].descriptor_ui | D012253 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | classification |
| mesh[26].descriptor_name | Rib Fractures |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000077321 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Deep Learning |
| mesh[28].qualifier_ui | Q000379 |
| mesh[28].descriptor_ui | D014057 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | methods |
| mesh[28].descriptor_name | Tomography, X-Ray Computed |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D008297 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Male |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D012680 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Sensitivity and Specificity |
| mesh[31].qualifier_ui | Q000379 |
| mesh[31].descriptor_ui | D011857 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | methods |
| mesh[31].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D005260 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Female |
| mesh[33].qualifier_ui | Q000293 |
| mesh[33].descriptor_ui | D035441 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | injuries |
| mesh[33].descriptor_name | Thoracic Wall |
| mesh[34].qualifier_ui | Q000000981 |
| mesh[34].descriptor_ui | D035441 |
| mesh[34].is_major_topic | True |
| mesh[34].qualifier_name | diagnostic imaging |
| mesh[34].descriptor_name | Thoracic Wall |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D008875 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Middle Aged |
| type | article |
| title | A deep learning-based approach to automated rib fracture detection and CWIS classification |
| biblio.issue | 7 |
| biblio.volume | 20 |
| biblio.last_page | 1389 |
| biblio.first_page | 1381 |
| topics[0].id | https://openalex.org/T11951 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2746 |
| topics[0].subfield.display_name | Surgery |
| topics[0].display_name | Trauma Management and Diagnosis |
| topics[1].id | https://openalex.org/T11467 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9879000186920166 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2711 |
| topics[1].subfield.display_name | Emergency Medicine |
| topics[1].display_name | Trauma and Emergency Care Studies |
| topics[2].id | https://openalex.org/T12154 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.972100019454956 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2746 |
| topics[2].subfield.display_name | Surgery |
| topics[2].display_name | Pelvic and Acetabular Injuries |
| is_xpac | False |
| apc_list.value | 3390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 4390 |
| apc_paid.value | 3390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 4390 |
| concepts[0].id | https://openalex.org/C160306043 |
| concepts[0].level | 2 |
| concepts[0].score | 0.732711911201477 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2576226 |
| concepts[0].display_name | Rib cage |
| concepts[1].id | https://openalex.org/C64869954 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7251414060592651 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[1].display_name | False positive paradox |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6345711946487427 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C126838900 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5254173278808594 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[3].display_name | Radiology |
| concepts[4].id | https://openalex.org/C43369102 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4423859417438507 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2307625 |
| concepts[4].display_name | Fracture (geology) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.42549240589141846 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2989005 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35168325901031494 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q214963 |
| concepts[6].display_name | Nuclear medicine |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.31405550241470337 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C127313418 |
| concepts[8].level | 0 |
| concepts[8].score | 0.09255406260490417 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[8].display_name | Geology |
| concepts[9].id | https://openalex.org/C105702510 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07179141044616699 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q514 |
| concepts[9].display_name | Anatomy |
| concepts[10].id | https://openalex.org/C187320778 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1349130 |
| concepts[10].display_name | Geotechnical engineering |
| keywords[0].id | https://openalex.org/keywords/rib-cage |
| keywords[0].score | 0.732711911201477 |
| keywords[0].display_name | Rib cage |
| keywords[1].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[1].score | 0.7251414060592651 |
| keywords[1].display_name | False positive paradox |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.6345711946487427 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/radiology |
| keywords[3].score | 0.5254173278808594 |
| keywords[3].display_name | Radiology |
| keywords[4].id | https://openalex.org/keywords/fracture |
| keywords[4].score | 0.4423859417438507 |
| keywords[4].display_name | Fracture (geology) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.42549240589141846 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/nuclear-medicine |
| keywords[6].score | 0.35168325901031494 |
| keywords[6].display_name | Nuclear medicine |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.31405550241470337 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/geology |
| keywords[8].score | 0.09255406260490417 |
| keywords[8].display_name | Geology |
| keywords[9].id | https://openalex.org/keywords/anatomy |
| keywords[9].score | 0.07179141044616699 |
| keywords[9].display_name | Anatomy |
| language | en |
| locations[0].id | doi:10.1007/s11548-025-03390-5 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S181408163 |
| locations[0].source.issn | 1861-6410, 1861-6429 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1861-6410 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Computer Assisted Radiology and Surgery |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s11548-025-03390-5.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computer Assisted Radiology and Surgery |
| locations[0].landing_page_url | https://doi.org/10.1007/s11548-025-03390-5 |
| locations[1].id | pmid:40377883 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | International journal of computer assisted radiology and surgery |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40377883 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:12226666 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | other-oa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/other-oa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Int J Comput Assist Radiol Surg |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12226666 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5054670293 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Victoria Marting |
| authorships[0].countries | NL |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I2801952686 |
| authorships[0].affiliations[1].raw_affiliation_string | Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[0].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[0].institutions[0].ror | https://ror.org/018906e22 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[0].institutions[0].country_code | NL |
| authorships[0].institutions[0].display_name | Erasmus MC |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Victoria Marting |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands., Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[1].author.id | https://openalex.org/A5018301398 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Noor Borren |
| authorships[1].countries | NL |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I2801952686 |
| authorships[1].affiliations[1].raw_affiliation_string | Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[1].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[1].institutions[0].ror | https://ror.org/018906e22 |
| authorships[1].institutions[0].type | healthcare |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[1].institutions[0].country_code | NL |
| authorships[1].institutions[0].display_name | Erasmus MC |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Noor Borren |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands., Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[2].author.id | https://openalex.org/A5093742600 |
| authorships[2].author.orcid | https://orcid.org/0009-0009-5170-8475 |
| authorships[2].author.display_name | Max R Van Diepen |
| authorships[2].countries | NL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[2].affiliations[0].raw_affiliation_string | Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[2].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[2].institutions[0].ror | https://ror.org/018906e22 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[2].institutions[0].country_code | NL |
| authorships[2].institutions[0].display_name | Erasmus MC |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Max R van Diepen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[3].author.id | https://openalex.org/A5025324690 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2597-7948 |
| authorships[3].author.display_name | Esther M.M. Van Lieshout |
| authorships[3].countries | NL |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[3].affiliations[0].raw_affiliation_string | Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[3].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[3].institutions[0].ror | https://ror.org/018906e22 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[3].institutions[0].country_code | NL |
| authorships[3].institutions[0].display_name | Erasmus MC |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Esther M M van Lieshout |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. |
| authorships[4].author.id | https://openalex.org/A5047217573 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0423-4675 |
| authorships[4].author.display_name | Mathieu M. E. Wijffels |
| authorships[4].countries | NL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[4].affiliations[0].raw_affiliation_string | Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. [email protected]. |
| authorships[4].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[4].institutions[0].ror | https://ror.org/018906e22 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[4].institutions[0].country_code | NL |
| authorships[4].institutions[0].display_name | Erasmus MC |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mathieu M E Wijffels |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. [email protected]. |
| authorships[5].author.id | https://openalex.org/A5012856150 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8257-7759 |
| authorships[5].author.display_name | Theo van Walsum |
| authorships[5].countries | NL |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2801952686 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. [email protected]. |
| authorships[5].institutions[0].id | https://openalex.org/I2801952686 |
| authorships[5].institutions[0].ror | https://ror.org/018906e22 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I2801952686 |
| authorships[5].institutions[0].country_code | NL |
| authorships[5].institutions[0].display_name | Erasmus MC |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Theo van Walsum |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s11548-025-03390-5.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A deep learning-based approach to automated rib fracture detection and CWIS classification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11951 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2746 |
| primary_topic.subfield.display_name | Surgery |
| primary_topic.display_name | Trauma Management and Diagnosis |
| related_works | https://openalex.org/W1557094818, https://openalex.org/W1985827995, https://openalex.org/W2913145587, https://openalex.org/W2125447159, https://openalex.org/W2183246718, https://openalex.org/W2990896816, https://openalex.org/W2099261052, https://openalex.org/W2460163667, https://openalex.org/W4290169775, https://openalex.org/W3209204065 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1007/s11548-025-03390-5 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S181408163 |
| best_oa_location.source.issn | 1861-6410, 1861-6429 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1861-6410 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Computer Assisted Radiology and Surgery |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11548-025-03390-5.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computer Assisted Radiology and Surgery |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s11548-025-03390-5 |
| primary_location.id | doi:10.1007/s11548-025-03390-5 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S181408163 |
| primary_location.source.issn | 1861-6410, 1861-6429 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1861-6410 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Computer Assisted Radiology and Surgery |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s11548-025-03390-5.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computer Assisted Radiology and Surgery |
| primary_location.landing_page_url | https://doi.org/10.1007/s11548-025-03390-5 |
| publication_date | 2025-05-16 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3217231380, https://openalex.org/W2886909014, https://openalex.org/W3202823735, https://openalex.org/W2067733510, https://openalex.org/W2608633747, https://openalex.org/W2796112341, https://openalex.org/W2938426920, https://openalex.org/W2121895757, https://openalex.org/W3014974815, https://openalex.org/W4361017252, https://openalex.org/W3132434189, https://openalex.org/W4280543726, https://openalex.org/W2791905011, https://openalex.org/W3035589528, https://openalex.org/W2750694842, https://openalex.org/W2807972335, https://openalex.org/W4293773470, https://openalex.org/W4303982805, https://openalex.org/W4383218413, https://openalex.org/W2966126878, https://openalex.org/W4200534624, https://openalex.org/W3201016307, https://openalex.org/W3112701542 |
| referenced_works_count | 23 |
| abstract_inverted_index.A | 119 |
| abstract_inverted_index.a | 6, 18, 138, 151, 170, 176, 186, 259 |
| abstract_inverted_index.28 | 103 |
| abstract_inverted_index.30 | 243 |
| abstract_inverted_index.CT | 31, 72, 88, 299 |
| abstract_inverted_index.In | 136 |
| abstract_inverted_index.On | 162 |
| abstract_inverted_index.an | 64, 181 |
| abstract_inverted_index.at | 175 |
| abstract_inverted_index.in | 44, 52, 71, 114, 242, 298, 306, 312 |
| abstract_inverted_index.is | 20, 48, 289, 302 |
| abstract_inverted_index.of | 13, 35, 56, 92, 116, 128, 132, 150, 173, 178, 183, 189, 195, 224, 234, 239, 263, 266, 269, 272, 276 |
| abstract_inverted_index.on | 250 |
| abstract_inverted_index.or | 23 |
| abstract_inverted_index.to | 60, 78, 156, 222, 291 |
| abstract_inverted_index.170 | 94 |
| abstract_inverted_index.198 | 87 |
| abstract_inverted_index.25% | 204 |
| abstract_inverted_index.94% | 223 |
| abstract_inverted_index.95% | 275 |
| abstract_inverted_index.97% | 212 |
| abstract_inverted_index.Rib | 25 |
| abstract_inverted_index.The | 9, 216, 228, 245, 286 |
| abstract_inverted_index.all | 235 |
| abstract_inverted_index.and | 11, 62, 74, 99, 102, 108, 121, 180, 208, 237, 247, 274, 294 |
| abstract_inverted_index.are | 5, 27, 37 |
| abstract_inverted_index.for | 97, 104, 126, 145, 205, 213, 304 |
| abstract_inverted_index.per | 193 |
| abstract_inverted_index.rib | 3, 46, 69, 139, 148, 218, 283, 296 |
| abstract_inverted_index.the | 49, 79, 117, 129, 133, 147, 158, 163, 167, 201, 209, 225, 251, 277, 281, 307, 313 |
| abstract_inverted_index.was | 59, 124, 143, 220, 255 |
| abstract_inverted_index.yet | 33 |
| abstract_inverted_index.0.96 | 273 |
| abstract_inverted_index.80%, | 174 |
| abstract_inverted_index.83%, | 184 |
| abstract_inverted_index.84%, | 264, 270 |
| abstract_inverted_index.85%, | 267 |
| abstract_inverted_index.87%, | 179 |
| abstract_inverted_index.CWIS | 134 |
| abstract_inverted_index.FPPS | 190, 271 |
| abstract_inverted_index.Wall | 81 |
| abstract_inverted_index.able | 290 |
| abstract_inverted_index.and) | 309 |
| abstract_inverted_index.each | 115, 127 |
| abstract_inverted_index.mean | 187 |
| abstract_inverted_index.ribs | 236, 241 |
| abstract_inverted_index.room | 303 |
| abstract_inverted_index.set, | 166 |
| abstract_inverted_index.set. | 315 |
| abstract_inverted_index.test | 165 |
| abstract_inverted_index.that | 67 |
| abstract_inverted_index.them | 76 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.used | 96 |
| abstract_inverted_index.were | 90, 95, 111, 154, 279 |
| abstract_inverted_index.with | 185, 200, 258 |
| abstract_inverted_index.(rare | 308 |
| abstract_inverted_index.1.11. | 196 |
| abstract_inverted_index.95.5% | 233 |
| abstract_inverted_index.98.4% | 238 |
| abstract_inverted_index.Chest | 80 |
| abstract_inverted_index.being | 203, 211 |
| abstract_inverted_index.scan) | 194 |
| abstract_inverted_index.scans | 89 |
| abstract_inverted_index.still | 38 |
| abstract_inverted_index.study | 58 |
| abstract_inverted_index.their | 53, 109 |
| abstract_inverted_index.there | 301 |
| abstract_inverted_index.these | 14 |
| abstract_inverted_index.three | 130 |
| abstract_inverted_index.using | 30 |
| abstract_inverted_index.which | 93 |
| abstract_inverted_index.(CWIS) | 84 |
| abstract_inverted_index.(false | 191 |
| abstract_inverted_index.Injury | 82 |
| abstract_inverted_index.assess | 63, 157 |
| abstract_inverted_index.common | 7 |
| abstract_inverted_index.detect | 293 |
| abstract_inverted_index.during | 40 |
| abstract_inverted_index.lowest | 202 |
| abstract_inverted_index.method | 66, 159, 168, 287 |
| abstract_inverted_index.missed | 39 |
| abstract_inverted_index.number | 10, 140, 149, 188, 219 |
| abstract_inverted_index.scans, | 32, 73, 300 |
| abstract_inverted_index.scans. | 118 |
| abstract_inverted_index.Another | 42 |
| abstract_inverted_index.Methods | 86 |
| abstract_inverted_index.Purpose | 1, 55 |
| abstract_inverted_index.Results | 161 |
| abstract_inverted_index.Society | 83 |
| abstract_inverted_index.better, | 257 |
| abstract_inverted_index.classes | 311 |
| abstract_inverted_index.complex | 206 |
| abstract_inverted_index.correct | 217, 282 |
| abstract_inverted_index.dataset | 254 |
| abstract_inverted_index.detects | 68 |
| abstract_inverted_index.develop | 61 |
| abstract_inverted_index.highest | 210 |
| abstract_inverted_index.injury. | 8 |
| abstract_inverted_index.labeled | 232 |
| abstract_inverted_index.network | 123, 142 |
| abstract_inverted_index.nnU-Net | 230 |
| abstract_inverted_index.number. | 284 |
| abstract_inverted_index.patient | 19 |
| abstract_inverted_index.trained | 125, 144 |
| abstract_inverted_index.treated | 21 |
| abstract_inverted_index.varied, | 199 |
| abstract_inverted_index.whether | 17 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.F1-score | 182, 268 |
| abstract_inverted_index.achieved | 169 |
| abstract_inverted_index.assigned | 221, 280 |
| abstract_inverted_index.classify | 295 |
| abstract_inverted_index.detected | 226 |
| abstract_inverted_index.external | 105, 252 |
| abstract_inverted_index.fracture | 260 |
| abstract_inverted_index.internal | 100, 164 |
| abstract_inverted_index.labeling | 141 |
| abstract_inverted_index.managing | 45 |
| abstract_inverted_index.manually | 112 |
| abstract_inverted_index.slightly | 256 |
| abstract_inverted_index.training | 98, 314 |
| abstract_inverted_index.Fractures | 107 |
| abstract_inverted_index.according | 77 |
| abstract_inverted_index.addition, | 137 |
| abstract_inverted_index.annotated | 113 |
| abstract_inverted_index.automated | 65 |
| abstract_inverted_index.challenge | 43 |
| abstract_inverted_index.correctly | 231 |
| abstract_inverted_index.detection | 120, 171, 246, 261 |
| abstract_inverted_index.developed | 288 |
| abstract_inverted_index.diagnosed | 29 |
| abstract_inverted_index.fracture. | 152 |
| abstract_inverted_index.fractured | 240 |
| abstract_inverted_index.fractures | 4, 15, 26, 36, 47, 70, 207, 278, 297 |
| abstract_inverted_index.influence | 16 |
| abstract_inverted_index.obtaining | 146 |
| abstract_inverted_index.patients. | 244 |
| abstract_inverted_index.performed | 155 |
| abstract_inverted_index.positives | 192 |
| abstract_inverted_index.posterior | 214 |
| abstract_inverted_index.precision | 177, 265 |
| abstract_inverted_index.typically | 28 |
| abstract_inverted_index.Conclusion | 285 |
| abstract_inverted_index.accurately | 292 |
| abstract_inverted_index.classifies | 75 |
| abstract_inverted_index.collected, | 91 |
| abstract_inverted_index.components | 131 |
| abstract_inverted_index.fractures. | 215, 227 |
| abstract_inverted_index.validation | 253 |
| abstract_inverted_index.Experiments | 153 |
| abstract_inverted_index.assessment. | 41 |
| abstract_inverted_index.improvement | 305 |
| abstract_inverted_index.performance | 249 |
| abstract_inverted_index.sensitivity | 172, 198, 262 |
| abstract_inverted_index.surgically. | 24 |
| abstract_inverted_index.validation, | 101 |
| abstract_inverted_index.validation. | 106 |
| abstract_inverted_index.variability | 51 |
| abstract_inverted_index.19.2–26.8% | 34 |
| abstract_inverted_index.performance. | 160 |
| abstract_inverted_index.interobserver | 50 |
| abstract_inverted_index.Classification | 197 |
| abstract_inverted_index.Trauma-induced | 2 |
| abstract_inverted_index.classification | 122, 248 |
| abstract_inverted_index.custom-trained | 229 |
| abstract_inverted_index.nonoperatively | 22 |
| abstract_inverted_index.characteristics | 12 |
| abstract_inverted_index.classification. | 54, 85 |
| abstract_inverted_index.classifications | 110 |
| abstract_inverted_index.classifications. | 135 |
| abstract_inverted_index.underrepresented | 310 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.28306215 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |