A Deep Learning-Based Approach to Lightweight Csi Feedback Article Swipe
Yongli An
,
Shuoyang Lu
,
Haoran Cai
,
Zhanlin JI
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4914386
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.4914386
Related Topics
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- http://doi.org/10.2139/ssrn.4914386
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401242968
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401242968Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.4914386Digital Object Identifier
- Title
-
A Deep Learning-Based Approach to Lightweight Csi FeedbackWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Yongli An, Shuoyang Lu, Haoran Cai, Zhanlin JIList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.4914386Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.4914386Direct OA link when available
- Concepts
-
Computer science, Deep learning, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401242968 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.4914386 |
| ids.doi | https://doi.org/10.2139/ssrn.4914386 |
| ids.openalex | https://openalex.org/W4401242968 |
| fwci | 0.0 |
| type | preprint |
| title | A Deep Learning-Based Approach to Lightweight Csi Feedback |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.6308000087738037 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6168064475059509 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C108583219 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6075776815414429 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[1].display_name | Deep learning |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5111194252967834 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6168064475059509 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/deep-learning |
| keywords[1].score | 0.6075776815414429 |
| keywords[1].display_name | Deep learning |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5111194252967834 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.2139/ssrn.4914386 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://doi.org/10.2139/ssrn.4914386 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5008099257 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yongli An |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yongli An |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5106421141 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Shuoyang Lu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shuoyang Lu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102577489 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Haoran Cai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haoran CAI |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5113317389 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Zhanlin JI |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Zhanlin JI |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://doi.org/10.2139/ssrn.4914386 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Deep Learning-Based Approach to Lightweight Csi Feedback |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.6308000087738037 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3215138031, https://openalex.org/W3009238340, https://openalex.org/W4321369474, https://openalex.org/W4360585206, https://openalex.org/W4285208911, https://openalex.org/W3082895349, https://openalex.org/W4213079790, https://openalex.org/W2248239756, https://openalex.org/W4323565446 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.4914386 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://doi.org/10.2139/ssrn.4914386 |
| primary_location.id | doi:10.2139/ssrn.4914386 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://doi.org/10.2139/ssrn.4914386 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.12584478 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |