A Deep Learning Based Estimator for Elliptic Flow in Heavy Ion Collisions Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.22323/1.422.0259
Deep learning (DL)-based models are the most widely used machine learning models which have been applied to solve numerous problems in high-energy particle physics. The ability of the DL models to learn unique patterns and correlations from data to map highly complex nonlinear functions is a matter of interest. Such features of the DL model could be used to explore the hidden physics laws that govern particle production, anisotropic flow, and spectra in heavy-ion collisions. This work sheds light on the possible use of the DL techniques, such as the feed-forward deep neural network (DNN) based estimator, to predict the elliptic flow ($v_2$) in heavy-ion collisions at RHIC and LHC energies. A novel method is used to process the track-level information as input to the DNN model. The model is trained with Pb-Pb collisions at $\\sqrt{s_{\\rm NN}} = 5.02$ TeV minimum bias simulated events with AMPT event generator. The trained model is successfully applied to estimate the centrality dependence of $v_2$ for both LHC and RHIC energies. The proposed model is quite successful in predicting the transverse momentum ($p_{\\rm T}$) dependence of $v_2$ as well. A noise sensitivity test is performed to estimate the systematic uncertainty of this method. The results of the DNN estimator are compared to both simulation and experiment, which concludes the robustness and prediction accuracy of the model.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.22323/1.422.0259
- https://pos.sissa.it/422/259/pdf
- OA Status
- gold
- References
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4361221100
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4361221100Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22323/1.422.0259Digital Object Identifier
- Title
-
A Deep Learning Based Estimator for Elliptic Flow in Heavy Ion CollisionsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-03-27Full publication date if available
- Authors
-
Neelkamal Mallick, Suraj Prasad, R. Sahoo, A. N. Mishra, G. G. BarnaföldiList of authors in order
- Landing page
-
https://doi.org/10.22323/1.422.0259Publisher landing page
- PDF URL
-
https://pos.sissa.it/422/259/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://pos.sissa.it/422/259/pdfDirect OA link when available
- Concepts
-
Large Hadron Collider, Estimator, Physics, Robustness (evolution), Artificial neural network, Elliptic flow, Particle physics, Deep learning, Nonlinear system, Nuclear physics, Artificial intelligence, Algorithm, Computer science, Statistical physics, Heavy ion, Ion, Mathematics, Quantum mechanics, Statistics, Gene, Chemistry, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
1Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4361221100 |
|---|---|
| doi | https://doi.org/10.22323/1.422.0259 |
| ids.doi | https://doi.org/10.22323/1.422.0259 |
| ids.openalex | https://openalex.org/W4361221100 |
| fwci | 0.0 |
| type | article |
| title | A Deep Learning Based Estimator for Elliptic Flow in Heavy Ion Collisions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 259 |
| biblio.first_page | 259 |
| topics[0].id | https://openalex.org/T10527 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9975000023841858 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3106 |
| topics[0].subfield.display_name | Nuclear and High Energy Physics |
| topics[0].display_name | High-Energy Particle Collisions Research |
| topics[1].id | https://openalex.org/T10048 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9955000281333923 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3106 |
| topics[1].subfield.display_name | Nuclear and High Energy Physics |
| topics[1].display_name | Particle physics theoretical and experimental studies |
| topics[2].id | https://openalex.org/T13650 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9197999835014343 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Computational Physics and Python Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C87668248 |
| concepts[0].level | 2 |
| concepts[0].score | 0.737715482711792 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q40605 |
| concepts[0].display_name | Large Hadron Collider |
| concepts[1].id | https://openalex.org/C185429906 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6499638557434082 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[1].display_name | Estimator |
| concepts[2].id | https://openalex.org/C121332964 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6347670555114746 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[2].display_name | Physics |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6338045597076416 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6284069418907166 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C80903900 |
| concepts[5].level | 4 |
| concepts[5].score | 0.5109450221061707 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5365798 |
| concepts[5].display_name | Elliptic flow |
| concepts[6].id | https://openalex.org/C109214941 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4659503400325775 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q18334 |
| concepts[6].display_name | Particle physics |
| concepts[7].id | https://openalex.org/C108583219 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4515657424926758 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[7].display_name | Deep learning |
| concepts[8].id | https://openalex.org/C158622935 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4275178611278534 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[8].display_name | Nonlinear system |
| concepts[9].id | https://openalex.org/C185544564 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4200015068054199 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q81197 |
| concepts[9].display_name | Nuclear physics |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3948586583137512 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36809998750686646 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C41008148 |
| concepts[12].level | 0 |
| concepts[12].score | 0.34690701961517334 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[12].display_name | Computer science |
| concepts[13].id | https://openalex.org/C121864883 |
| concepts[13].level | 1 |
| concepts[13].score | 0.34450268745422363 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q677916 |
| concepts[13].display_name | Statistical physics |
| concepts[14].id | https://openalex.org/C2988362075 |
| concepts[14].level | 3 |
| concepts[14].score | 0.23838099837303162 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12416032 |
| concepts[14].display_name | Heavy ion |
| concepts[15].id | https://openalex.org/C145148216 |
| concepts[15].level | 2 |
| concepts[15].score | 0.18807655572891235 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36496 |
| concepts[15].display_name | Ion |
| concepts[16].id | https://openalex.org/C33923547 |
| concepts[16].level | 0 |
| concepts[16].score | 0.12287437915802002 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[16].display_name | Mathematics |
| concepts[17].id | https://openalex.org/C62520636 |
| concepts[17].level | 1 |
| concepts[17].score | 0.10658144950866699 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[17].display_name | Quantum mechanics |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.10516035556793213 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C104317684 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[19].display_name | Gene |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C55493867 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[21].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/large-hadron-collider |
| keywords[0].score | 0.737715482711792 |
| keywords[0].display_name | Large Hadron Collider |
| keywords[1].id | https://openalex.org/keywords/estimator |
| keywords[1].score | 0.6499638557434082 |
| keywords[1].display_name | Estimator |
| keywords[2].id | https://openalex.org/keywords/physics |
| keywords[2].score | 0.6347670555114746 |
| keywords[2].display_name | Physics |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.6338045597076416 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.6284069418907166 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/elliptic-flow |
| keywords[5].score | 0.5109450221061707 |
| keywords[5].display_name | Elliptic flow |
| keywords[6].id | https://openalex.org/keywords/particle-physics |
| keywords[6].score | 0.4659503400325775 |
| keywords[6].display_name | Particle physics |
| keywords[7].id | https://openalex.org/keywords/deep-learning |
| keywords[7].score | 0.4515657424926758 |
| keywords[7].display_name | Deep learning |
| keywords[8].id | https://openalex.org/keywords/nonlinear-system |
| keywords[8].score | 0.4275178611278534 |
| keywords[8].display_name | Nonlinear system |
| keywords[9].id | https://openalex.org/keywords/nuclear-physics |
| keywords[9].score | 0.4200015068054199 |
| keywords[9].display_name | Nuclear physics |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.3948586583137512 |
| keywords[10].display_name | Artificial intelligence |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.36809998750686646 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/computer-science |
| keywords[12].score | 0.34690701961517334 |
| keywords[12].display_name | Computer science |
| keywords[13].id | https://openalex.org/keywords/statistical-physics |
| keywords[13].score | 0.34450268745422363 |
| keywords[13].display_name | Statistical physics |
| keywords[14].id | https://openalex.org/keywords/heavy-ion |
| keywords[14].score | 0.23838099837303162 |
| keywords[14].display_name | Heavy ion |
| keywords[15].id | https://openalex.org/keywords/ion |
| keywords[15].score | 0.18807655572891235 |
| keywords[15].display_name | Ion |
| keywords[16].id | https://openalex.org/keywords/mathematics |
| keywords[16].score | 0.12287437915802002 |
| keywords[16].display_name | Mathematics |
| keywords[17].id | https://openalex.org/keywords/quantum-mechanics |
| keywords[17].score | 0.10658144950866699 |
| keywords[17].display_name | Quantum mechanics |
| keywords[18].id | https://openalex.org/keywords/statistics |
| keywords[18].score | 0.10516035556793213 |
| keywords[18].display_name | Statistics |
| language | en |
| locations[0].id | doi:10.22323/1.422.0259 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://pos.sissa.it/422/259/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of The Tenth Annual Conference on Large Hadron Collider Physics — PoS(LHCP2022) |
| locations[0].landing_page_url | https://doi.org/10.22323/1.422.0259 |
| locations[1].id | pmh:oai:cds.cern.ch:2881747 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | CERN Document Server (European Organization for Nuclear Research) |
| locations[1].source.host_organization | https://openalex.org/I67311998 |
| locations[1].source.host_organization_name | European Organization for Nuclear Research |
| locations[1].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[1].license | cc-by-nc-nd |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | |
| locations[1].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://cds.cern.ch/record/2881747 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5082403328 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2706-1025 |
| authorships[0].author.display_name | Neelkamal Mallick |
| authorships[0].countries | CH, HU, IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I67311998 |
| authorships[0].affiliations[0].raw_affiliation_string | 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210126225 |
| authorships[0].affiliations[1].raw_affiliation_string | 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I64295750 |
| authorships[0].affiliations[2].raw_affiliation_string | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India |
| authorships[0].institutions[0].id | https://openalex.org/I67311998 |
| authorships[0].institutions[0].ror | https://ror.org/01ggx4157 |
| authorships[0].institutions[0].type | facility |
| authorships[0].institutions[0].lineage | https://openalex.org/I67311998 |
| authorships[0].institutions[0].country_code | CH |
| authorships[0].institutions[0].display_name | European Organization for Nuclear Research |
| authorships[0].institutions[1].id | https://openalex.org/I4210126225 |
| authorships[0].institutions[1].ror | https://ror.org/035dsb084 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I4210126225, https://openalex.org/I4387152226 |
| authorships[0].institutions[1].country_code | HU |
| authorships[0].institutions[1].display_name | HUN-REN Wigner Research Centre for Physics |
| authorships[0].institutions[2].id | https://openalex.org/I64295750 |
| authorships[0].institutions[2].ror | https://ror.org/01hhf7w52 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I64295750 |
| authorships[0].institutions[2].country_code | IN |
| authorships[0].institutions[2].display_name | Indian Institute of Technology Indore |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Neelkamal Mallick |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India, 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary, 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| authorships[1].author.id | https://openalex.org/A5076592941 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0607-2841 |
| authorships[1].author.display_name | Suraj Prasad |
| authorships[1].countries | CH, HU, IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I67311998 |
| authorships[1].affiliations[0].raw_affiliation_string | 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I64295750 |
| authorships[1].affiliations[1].raw_affiliation_string | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I4210126225 |
| authorships[1].affiliations[2].raw_affiliation_string | 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary |
| authorships[1].institutions[0].id | https://openalex.org/I67311998 |
| authorships[1].institutions[0].ror | https://ror.org/01ggx4157 |
| authorships[1].institutions[0].type | facility |
| authorships[1].institutions[0].lineage | https://openalex.org/I67311998 |
| authorships[1].institutions[0].country_code | CH |
| authorships[1].institutions[0].display_name | European Organization for Nuclear Research |
| authorships[1].institutions[1].id | https://openalex.org/I4210126225 |
| authorships[1].institutions[1].ror | https://ror.org/035dsb084 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210126225, https://openalex.org/I4387152226 |
| authorships[1].institutions[1].country_code | HU |
| authorships[1].institutions[1].display_name | HUN-REN Wigner Research Centre for Physics |
| authorships[1].institutions[2].id | https://openalex.org/I64295750 |
| authorships[1].institutions[2].ror | https://ror.org/01hhf7w52 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I64295750 |
| authorships[1].institutions[2].country_code | IN |
| authorships[1].institutions[2].display_name | Indian Institute of Technology Indore |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Suraj Prasad |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India, 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary, 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| authorships[2].author.id | https://openalex.org/A5077943951 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3334-0661 |
| authorships[2].author.display_name | R. Sahoo |
| authorships[2].countries | CH, HU, IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210126225 |
| authorships[2].affiliations[0].raw_affiliation_string | 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I67311998 |
| authorships[2].affiliations[1].raw_affiliation_string | 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I64295750 |
| authorships[2].affiliations[2].raw_affiliation_string | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India |
| authorships[2].institutions[0].id | https://openalex.org/I67311998 |
| authorships[2].institutions[0].ror | https://ror.org/01ggx4157 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I67311998 |
| authorships[2].institutions[0].country_code | CH |
| authorships[2].institutions[0].display_name | European Organization for Nuclear Research |
| authorships[2].institutions[1].id | https://openalex.org/I4210126225 |
| authorships[2].institutions[1].ror | https://ror.org/035dsb084 |
| authorships[2].institutions[1].type | facility |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210126225, https://openalex.org/I4387152226 |
| authorships[2].institutions[1].country_code | HU |
| authorships[2].institutions[1].display_name | HUN-REN Wigner Research Centre for Physics |
| authorships[2].institutions[2].id | https://openalex.org/I64295750 |
| authorships[2].institutions[2].ror | https://ror.org/01hhf7w52 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I64295750 |
| authorships[2].institutions[2].country_code | IN |
| authorships[2].institutions[2].display_name | Indian Institute of Technology Indore |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Raghunath Sahoo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India, 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary, 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| authorships[3].author.id | https://openalex.org/A5011506442 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3892-2719 |
| authorships[3].author.display_name | A. N. Mishra |
| authorships[3].countries | CH, HU, IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210126225 |
| authorships[3].affiliations[0].raw_affiliation_string | 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I64295750 |
| authorships[3].affiliations[1].raw_affiliation_string | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I67311998 |
| authorships[3].affiliations[2].raw_affiliation_string | 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| authorships[3].institutions[0].id | https://openalex.org/I67311998 |
| authorships[3].institutions[0].ror | https://ror.org/01ggx4157 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I67311998 |
| authorships[3].institutions[0].country_code | CH |
| authorships[3].institutions[0].display_name | European Organization for Nuclear Research |
| authorships[3].institutions[1].id | https://openalex.org/I4210126225 |
| authorships[3].institutions[1].ror | https://ror.org/035dsb084 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I4210126225, https://openalex.org/I4387152226 |
| authorships[3].institutions[1].country_code | HU |
| authorships[3].institutions[1].display_name | HUN-REN Wigner Research Centre for Physics |
| authorships[3].institutions[2].id | https://openalex.org/I64295750 |
| authorships[3].institutions[2].ror | https://ror.org/01hhf7w52 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I64295750 |
| authorships[3].institutions[2].country_code | IN |
| authorships[3].institutions[2].display_name | Indian Institute of Technology Indore |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Aditya Nath Mishra |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India, 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary, 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| authorships[4].author.id | https://openalex.org/A5108167498 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-9223-6480 |
| authorships[4].author.display_name | G. G. Barnaföldi |
| authorships[4].countries | CH, HU, IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210126225 |
| authorships[4].affiliations[0].raw_affiliation_string | 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I67311998 |
| authorships[4].affiliations[1].raw_affiliation_string | 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I64295750 |
| authorships[4].affiliations[2].raw_affiliation_string | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India |
| authorships[4].institutions[0].id | https://openalex.org/I67311998 |
| authorships[4].institutions[0].ror | https://ror.org/01ggx4157 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I67311998 |
| authorships[4].institutions[0].country_code | CH |
| authorships[4].institutions[0].display_name | European Organization for Nuclear Research |
| authorships[4].institutions[1].id | https://openalex.org/I4210126225 |
| authorships[4].institutions[1].ror | https://ror.org/035dsb084 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I4210126225, https://openalex.org/I4387152226 |
| authorships[4].institutions[1].country_code | HU |
| authorships[4].institutions[1].display_name | HUN-REN Wigner Research Centre for Physics |
| authorships[4].institutions[2].id | https://openalex.org/I64295750 |
| authorships[4].institutions[2].ror | https://ror.org/01hhf7w52 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I64295750 |
| authorships[4].institutions[2].country_code | IN |
| authorships[4].institutions[2].display_name | Indian Institute of Technology Indore |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Gergely Gábor Barnaföldi |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | 𝑎 Department of Physics, Indian Institute of Technology Indore, Simrol, Indore 453552, India, 𝑏 Wigner Research Center for Physics, 29-33 Konkoly-Thege Miklós Street, H-1121 Budapest, Hungary, 𝑐 CERN, CH 1211, Geneva 23, Switzerland |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pos.sissa.it/422/259/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Deep Learning Based Estimator for Elliptic Flow in Heavy Ion Collisions |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10527 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9975000023841858 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3106 |
| primary_topic.subfield.display_name | Nuclear and High Energy Physics |
| primary_topic.display_name | High-Energy Particle Collisions Research |
| related_works | https://openalex.org/W2748952813, https://openalex.org/W2020147830, https://openalex.org/W2068680257, https://openalex.org/W2124677047, https://openalex.org/W2029086688, https://openalex.org/W1974593373, https://openalex.org/W1969585097, https://openalex.org/W1992188904, https://openalex.org/W291573651, https://openalex.org/W1985712914 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.22323/1.422.0259 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://pos.sissa.it/422/259/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of The Tenth Annual Conference on Large Hadron Collider Physics — PoS(LHCP2022) |
| best_oa_location.landing_page_url | https://doi.org/10.22323/1.422.0259 |
| primary_location.id | doi:10.22323/1.422.0259 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://pos.sissa.it/422/259/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of The Tenth Annual Conference on Large Hadron Collider Physics — PoS(LHCP2022) |
| primary_location.landing_page_url | https://doi.org/10.22323/1.422.0259 |
| publication_date | 2023-03-27 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2271840356 |
| referenced_works_count | 1 |
| abstract_inverted_index.= | 137 |
| abstract_inverted_index.A | 111, 185 |
| abstract_inverted_index.a | 45 |
| abstract_inverted_index.DL | 28, 53, 85 |
| abstract_inverted_index.as | 88, 121, 183 |
| abstract_inverted_index.at | 106, 134 |
| abstract_inverted_index.be | 56 |
| abstract_inverted_index.in | 20, 72, 103, 173 |
| abstract_inverted_index.is | 44, 114, 129, 151, 170, 189 |
| abstract_inverted_index.of | 26, 47, 51, 83, 159, 181, 196, 201, 219 |
| abstract_inverted_index.on | 79 |
| abstract_inverted_index.to | 16, 30, 38, 58, 97, 116, 123, 154, 191, 207 |
| abstract_inverted_index.DNN | 125, 203 |
| abstract_inverted_index.LHC | 109, 163 |
| abstract_inverted_index.TeV | 139 |
| abstract_inverted_index.The | 24, 127, 148, 167, 199 |
| abstract_inverted_index.and | 34, 70, 108, 164, 210, 216 |
| abstract_inverted_index.are | 4, 205 |
| abstract_inverted_index.for | 161 |
| abstract_inverted_index.map | 39 |
| abstract_inverted_index.the | 5, 27, 52, 60, 80, 84, 89, 99, 118, 124, 156, 175, 193, 202, 214, 220 |
| abstract_inverted_index.use | 82 |
| abstract_inverted_index.AMPT | 145 |
| abstract_inverted_index.Deep | 0 |
| abstract_inverted_index.NN}} | 136 |
| abstract_inverted_index.RHIC | 107, 165 |
| abstract_inverted_index.Such | 49 |
| abstract_inverted_index.This | 75 |
| abstract_inverted_index.T}$) | 179 |
| abstract_inverted_index.been | 14 |
| abstract_inverted_index.bias | 141 |
| abstract_inverted_index.both | 162, 208 |
| abstract_inverted_index.data | 37 |
| abstract_inverted_index.deep | 91 |
| abstract_inverted_index.flow | 101 |
| abstract_inverted_index.from | 36 |
| abstract_inverted_index.have | 13 |
| abstract_inverted_index.laws | 63 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.such | 87 |
| abstract_inverted_index.test | 188 |
| abstract_inverted_index.that | 64 |
| abstract_inverted_index.this | 197 |
| abstract_inverted_index.used | 8, 57, 115 |
| abstract_inverted_index.with | 131, 144 |
| abstract_inverted_index.work | 76 |
| abstract_inverted_index.$v_2$ | 160, 182 |
| abstract_inverted_index.(DNN) | 94 |
| abstract_inverted_index.5.02$ | 138 |
| abstract_inverted_index.Pb-Pb | 132 |
| abstract_inverted_index.based | 95 |
| abstract_inverted_index.could | 55 |
| abstract_inverted_index.event | 146 |
| abstract_inverted_index.flow, | 69 |
| abstract_inverted_index.input | 122 |
| abstract_inverted_index.learn | 31 |
| abstract_inverted_index.light | 78 |
| abstract_inverted_index.model | 54, 128, 150, 169 |
| abstract_inverted_index.noise | 186 |
| abstract_inverted_index.novel | 112 |
| abstract_inverted_index.quite | 171 |
| abstract_inverted_index.sheds | 77 |
| abstract_inverted_index.solve | 17 |
| abstract_inverted_index.well. | 184 |
| abstract_inverted_index.which | 12, 212 |
| abstract_inverted_index.events | 143 |
| abstract_inverted_index.govern | 65 |
| abstract_inverted_index.hidden | 61 |
| abstract_inverted_index.highly | 40 |
| abstract_inverted_index.matter | 46 |
| abstract_inverted_index.method | 113 |
| abstract_inverted_index.model. | 126, 221 |
| abstract_inverted_index.models | 3, 11, 29 |
| abstract_inverted_index.neural | 92 |
| abstract_inverted_index.unique | 32 |
| abstract_inverted_index.widely | 7 |
| abstract_inverted_index.($v_2$) | 102 |
| abstract_inverted_index.ability | 25 |
| abstract_inverted_index.applied | 15, 153 |
| abstract_inverted_index.complex | 41 |
| abstract_inverted_index.explore | 59 |
| abstract_inverted_index.machine | 9 |
| abstract_inverted_index.method. | 198 |
| abstract_inverted_index.minimum | 140 |
| abstract_inverted_index.network | 93 |
| abstract_inverted_index.physics | 62 |
| abstract_inverted_index.predict | 98 |
| abstract_inverted_index.process | 117 |
| abstract_inverted_index.results | 200 |
| abstract_inverted_index.spectra | 71 |
| abstract_inverted_index.trained | 130, 149 |
| abstract_inverted_index.accuracy | 218 |
| abstract_inverted_index.compared | 206 |
| abstract_inverted_index.elliptic | 100 |
| abstract_inverted_index.estimate | 155, 192 |
| abstract_inverted_index.features | 50 |
| abstract_inverted_index.learning | 1, 10 |
| abstract_inverted_index.momentum | 177 |
| abstract_inverted_index.numerous | 18 |
| abstract_inverted_index.particle | 22, 66 |
| abstract_inverted_index.patterns | 33 |
| abstract_inverted_index.physics. | 23 |
| abstract_inverted_index.possible | 81 |
| abstract_inverted_index.problems | 19 |
| abstract_inverted_index.proposed | 168 |
| abstract_inverted_index.($p_{\\rm | 178 |
| abstract_inverted_index.concludes | 213 |
| abstract_inverted_index.energies. | 110, 166 |
| abstract_inverted_index.estimator | 204 |
| abstract_inverted_index.functions | 43 |
| abstract_inverted_index.heavy-ion | 73, 104 |
| abstract_inverted_index.interest. | 48 |
| abstract_inverted_index.nonlinear | 42 |
| abstract_inverted_index.performed | 190 |
| abstract_inverted_index.simulated | 142 |
| abstract_inverted_index.(DL)-based | 2 |
| abstract_inverted_index.centrality | 157 |
| abstract_inverted_index.collisions | 105, 133 |
| abstract_inverted_index.dependence | 158, 180 |
| abstract_inverted_index.estimator, | 96 |
| abstract_inverted_index.generator. | 147 |
| abstract_inverted_index.predicting | 174 |
| abstract_inverted_index.prediction | 217 |
| abstract_inverted_index.robustness | 215 |
| abstract_inverted_index.simulation | 209 |
| abstract_inverted_index.successful | 172 |
| abstract_inverted_index.systematic | 194 |
| abstract_inverted_index.transverse | 176 |
| abstract_inverted_index.anisotropic | 68 |
| abstract_inverted_index.collisions. | 74 |
| abstract_inverted_index.experiment, | 211 |
| abstract_inverted_index.high-energy | 21 |
| abstract_inverted_index.information | 120 |
| abstract_inverted_index.production, | 67 |
| abstract_inverted_index.sensitivity | 187 |
| abstract_inverted_index.techniques, | 86 |
| abstract_inverted_index.track-level | 119 |
| abstract_inverted_index.uncertainty | 195 |
| abstract_inverted_index.correlations | 35 |
| abstract_inverted_index.feed-forward | 90 |
| abstract_inverted_index.successfully | 152 |
| abstract_inverted_index.$\\sqrt{s_{\\rm | 135 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.0242103 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |