A Deep Learning-Based Framework for Impact Load Identification Using Strain Data on Composite Plates Article Swipe
Yang‐Chang Wu
,
Juxiang Zhou
,
Shaoqing Wu
,
Hang Yu
·
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5226086
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.2139/ssrn.5226086
Related Topics
Concepts
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.2139/ssrn.5226086
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409672201
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409672201Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.2139/ssrn.5226086Digital Object Identifier
- Title
-
A Deep Learning-Based Framework for Impact Load Identification Using Strain Data on Composite PlatesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Yang‐Chang Wu, Juxiang Zhou, Shaoqing Wu, Hang YuList of authors in order
- Landing page
-
https://doi.org/10.2139/ssrn.5226086Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.2139/ssrn.5226086Direct OA link when available
- Concepts
-
Composite number, Identification (biology), Strain (injury), Computer science, Materials science, Artificial intelligence, Machine learning, Composite material, Medicine, Biology, Botany, Internal medicineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409672201 |
|---|---|
| doi | https://doi.org/10.2139/ssrn.5226086 |
| ids.doi | https://doi.org/10.2139/ssrn.5226086 |
| ids.openalex | https://openalex.org/W4409672201 |
| fwci | 0.0 |
| type | preprint |
| title | A Deep Learning-Based Framework for Impact Load Identification Using Strain Data on Composite Plates |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10534 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9958000183105469 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Structural Health Monitoring Techniques |
| topics[1].id | https://openalex.org/T11606 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9926000237464905 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Infrastructure Maintenance and Monitoring |
| topics[2].id | https://openalex.org/T10219 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9805999994277954 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Mechanical Behavior of Composites |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C104779481 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7690473794937134 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q50707 |
| concepts[0].display_name | Composite number |
| concepts[1].id | https://openalex.org/C116834253 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6056696772575378 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[1].display_name | Identification (biology) |
| concepts[2].id | https://openalex.org/C2778022156 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6011790633201599 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q576145 |
| concepts[2].display_name | Strain (injury) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4486343264579773 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.38880816102027893 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.38704442977905273 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C119857082 |
| concepts[6].level | 1 |
| concepts[6].score | 0.32061415910720825 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[6].display_name | Machine learning |
| concepts[7].id | https://openalex.org/C159985019 |
| concepts[7].level | 1 |
| concepts[7].score | 0.28861531615257263 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[7].display_name | Composite material |
| concepts[8].id | https://openalex.org/C71924100 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0837070643901825 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[8].display_name | Medicine |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.06758421659469604 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C59822182 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[10].display_name | Botany |
| concepts[11].id | https://openalex.org/C126322002 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[11].display_name | Internal medicine |
| keywords[0].id | https://openalex.org/keywords/composite-number |
| keywords[0].score | 0.7690473794937134 |
| keywords[0].display_name | Composite number |
| keywords[1].id | https://openalex.org/keywords/identification |
| keywords[1].score | 0.6056696772575378 |
| keywords[1].display_name | Identification (biology) |
| keywords[2].id | https://openalex.org/keywords/strain |
| keywords[2].score | 0.6011790633201599 |
| keywords[2].display_name | Strain (injury) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4486343264579773 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.38880816102027893 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.38704442977905273 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/machine-learning |
| keywords[6].score | 0.32061415910720825 |
| keywords[6].display_name | Machine learning |
| keywords[7].id | https://openalex.org/keywords/composite-material |
| keywords[7].score | 0.28861531615257263 |
| keywords[7].display_name | Composite material |
| keywords[8].id | https://openalex.org/keywords/medicine |
| keywords[8].score | 0.0837070643901825 |
| keywords[8].display_name | Medicine |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.06758421659469604 |
| keywords[9].display_name | Biology |
| language | en |
| locations[0].id | doi:10.2139/ssrn.5226086 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210172589 |
| locations[0].source.issn | 1556-5068 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1556-5068 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | SSRN Electronic Journal |
| locations[0].source.host_organization | https://openalex.org/I1318003438 |
| locations[0].source.host_organization_name | RELX Group (Netherlands) |
| locations[0].source.host_organization_lineage | https://openalex.org/I1318003438 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.2139/ssrn.5226086 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100753551 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7815-2686 |
| authorships[0].author.display_name | Yang‐Chang Wu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang Wu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5009856040 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2693-2204 |
| authorships[1].author.display_name | Juxiang Zhou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiangbei Zhou |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103152449 |
| authorships[2].author.orcid | https://orcid.org/0009-0003-3275-7980 |
| authorships[2].author.display_name | Shaoqing Wu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shaoqing WU |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100432192 |
| authorships[3].author.orcid | https://orcid.org/0009-0000-4624-1123 |
| authorships[3].author.display_name | Hang Yu |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hualing Yu |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.2139/ssrn.5226086 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Deep Learning-Based Framework for Impact Load Identification Using Strain Data on Composite Plates |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10534 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9958000183105469 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Structural Health Monitoring Techniques |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W4387369504, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W3107602296, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.2139/ssrn.5226086 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210172589 |
| best_oa_location.source.issn | 1556-5068 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1556-5068 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | SSRN Electronic Journal |
| best_oa_location.source.host_organization | https://openalex.org/I1318003438 |
| best_oa_location.source.host_organization_name | RELX Group (Netherlands) |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.2139/ssrn.5226086 |
| primary_location.id | doi:10.2139/ssrn.5226086 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210172589 |
| primary_location.source.issn | 1556-5068 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1556-5068 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | SSRN Electronic Journal |
| primary_location.source.host_organization | https://openalex.org/I1318003438 |
| primary_location.source.host_organization_name | RELX Group (Netherlands) |
| primary_location.source.host_organization_lineage | https://openalex.org/I1318003438 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.2139/ssrn.5226086 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.1495825 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |